Convergence and Stability of Split-Step-Theta Methods for Stochastic Differential Equations With Jumps Under Non-Global Lipschitz drift Coefficient

Jean Daniel Mukam, Antoine Tambue
{"title":"Convergence and Stability of Split-Step-Theta Methods for Stochastic Differential Equations With Jumps Under Non-Global Lipschitz drift Coefficient","authors":"Jean Daniel Mukam, Antoine Tambue","doi":"10.2139/ssrn.3270310","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the convergence and stability of the split step theta method (SSTM) and its compensated form for stochastic differential equations with jumps (SDEwJs) under non-global Lipschitz condition of the drift term. The methods converge strongly to the exact solution in the root mean square with order 1/2. Stability analysis reveals that the compensated split-step-theta method (CSSTM) holds the A-stability property for θ ∈ [1/2, 1] for both linear and nonlinear cases. For a linear test equation with a negative drift and positive jump coefficients, there exists θ ≤ 1/2 for which the SSTM is A-stable. This overcome the barrier of θ by D. J. Higham & P. E. Kloeden (2006) and X. Wang & S. Gan (2010). In the nonlinear case the SSTM holds the B-stability property. We give some numerical experiments to illustrate our theoretical results.","PeriodicalId":365755,"journal":{"name":"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3270310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate the convergence and stability of the split step theta method (SSTM) and its compensated form for stochastic differential equations with jumps (SDEwJs) under non-global Lipschitz condition of the drift term. The methods converge strongly to the exact solution in the root mean square with order 1/2. Stability analysis reveals that the compensated split-step-theta method (CSSTM) holds the A-stability property for θ ∈ [1/2, 1] for both linear and nonlinear cases. For a linear test equation with a negative drift and positive jump coefficients, there exists θ ≤ 1/2 for which the SSTM is A-stable. This overcome the barrier of θ by D. J. Higham & P. E. Kloeden (2006) and X. Wang & S. Gan (2010). In the nonlinear case the SSTM holds the B-stability property. We give some numerical experiments to illustrate our theoretical results.
非全局Lipschitz漂移系数下具有跳跃的随机微分方程的分裂-步- θ方法的收敛性和稳定性
在漂移项的非全局Lipschitz条件下,研究了具有跳跃的随机微分方程(SDEwJs)的分裂阶跃法(SSTM)及其补偿形式的收敛性和稳定性。这些方法强收敛于均方根的精确解,且解的阶为1/2。稳定性分析表明,对于θ∈[1/2,1],补偿裂步- θ方法(CSSTM)在线性和非线性情况下都具有a -稳定性。对于负漂移系数和正跳跃系数的线性试验方程,存在θ≤1/2,使得SSTM是a稳定的。D. J.海厄姆和;P. E. Kloeden (2006);甘思(2010)。在非线性情况下,SSTM具有b稳定特性。我们给出了一些数值实验来说明我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信