A finite descent theory for linear programming, piecewise linear convex minimization, and the linear complementarity problem

Daniel Solow, P. Sengupta
{"title":"A finite descent theory for linear programming, piecewise linear convex minimization, and the linear complementarity problem","authors":"Daniel Solow, P. Sengupta","doi":"10.1002/NAV.3800320306","DOIUrl":null,"url":null,"abstract":"A descent algorithm simultaneously capable of solving linear programming, piecewise linear convex minimization, and the linear complementarity problem is developed. Conditions are given under which a solution can be found in a finite number of iterations using the geometry of the problem. A computer algorithm is developed and test problems are solved by both this method and Lemke's algorithm. Current results indicate a decrease in the number of cells visited but an increase in the total number of pivots needed to solve the problem.","PeriodicalId":431817,"journal":{"name":"Naval Research Logistics Quarterly","volume":"1152 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1985-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naval Research Logistics Quarterly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/NAV.3800320306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

A descent algorithm simultaneously capable of solving linear programming, piecewise linear convex minimization, and the linear complementarity problem is developed. Conditions are given under which a solution can be found in a finite number of iterations using the geometry of the problem. A computer algorithm is developed and test problems are solved by both this method and Lemke's algorithm. Current results indicate a decrease in the number of cells visited but an increase in the total number of pivots needed to solve the problem.
线性规划的有限下降理论,分段线性凸最小化,线性互补问题
提出了一种同时求解线性规划、分段线性凸最小化和线性互补问题的下降算法。给出了在有限次迭代中利用问题的几何性质找到解的条件。开发了一种计算机算法,并用该方法和Lemke算法解决了测试问题。目前的结果表明,访问的单元格数量减少了,但解决问题所需的枢轴总数增加了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信