Storage System Trace Characterization, Compression, and Synthesis using Machine Learning – An Extended Abstract

Pratik Poudel
{"title":"Storage System Trace Characterization, Compression, and Synthesis using Machine Learning – An Extended Abstract","authors":"Pratik Poudel","doi":"10.1145/3573900.3593632","DOIUrl":null,"url":null,"abstract":"This study addresses the knowledge gap in request-level storage trace analysis by incorporating workload characterization, compression, and synthesis. The aim is to better understand workload behavior and provide unique workloads for storage system testing under different scenarios. Machine learning techniques like K-means clustering and PCA analysis are employed to understand trace properties and reduce manual workload selection. By generating synthetic workloads, the proposed method facilitates simulation and modeling-based studies of storage systems, especially for emerging technologies like Storage Class Memory (SCM) with limited workload availability.","PeriodicalId":246048,"journal":{"name":"Proceedings of the 2023 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3573900.3593632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study addresses the knowledge gap in request-level storage trace analysis by incorporating workload characterization, compression, and synthesis. The aim is to better understand workload behavior and provide unique workloads for storage system testing under different scenarios. Machine learning techniques like K-means clustering and PCA analysis are employed to understand trace properties and reduce manual workload selection. By generating synthetic workloads, the proposed method facilitates simulation and modeling-based studies of storage systems, especially for emerging technologies like Storage Class Memory (SCM) with limited workload availability.
使用机器学习的存储系统跟踪表征,压缩和合成-扩展摘要
本研究通过结合工作负载表征、压缩和合成,解决了请求级存储跟踪分析中的知识差距。目的是更好地理解工作负载行为,并为不同场景下的存储系统测试提供独特的工作负载。像K-means聚类和PCA分析这样的机器学习技术被用来理解跟踪属性并减少人工工作量选择。通过生成合成工作负载,该方法促进了存储系统的仿真和基于建模的研究,特别是对于诸如存储类内存(SCM)等具有有限工作负载可用性的新兴技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信