Hybrid differential evolution based on fuzzy C-means clustering

Wenyin Gong, Z. Cai, C. Ling, Jun Du
{"title":"Hybrid differential evolution based on fuzzy C-means clustering","authors":"Wenyin Gong, Z. Cai, C. Ling, Jun Du","doi":"10.1145/1569901.1569974","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a hybrid Differential Evolution (DE) algorithm based on the fuzzy C-means clustering algorithm, referred to as FCDE. The fuzzy C-means clustering algorithm is incorporated with DE to utilize the information of the population efficiently, and hence it can generate good solutions and enhance the performance of the original DE. In addition, the population-based algorithmgenerator is adopted to efficiently update the population with the clustering offspring. In order to test the performance of our approach, 13 high-dimensional benchmark functions of diverse complexities are employed. The results show that our approach is effective and efficient. Compared with other state-of-the-art DE approaches, our approach performs better, or at least comparably, in terms of the quality of the final solutions and the reduction of the number of fitness function evaluations (NFFEs).","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1569974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we propose a hybrid Differential Evolution (DE) algorithm based on the fuzzy C-means clustering algorithm, referred to as FCDE. The fuzzy C-means clustering algorithm is incorporated with DE to utilize the information of the population efficiently, and hence it can generate good solutions and enhance the performance of the original DE. In addition, the population-based algorithmgenerator is adopted to efficiently update the population with the clustering offspring. In order to test the performance of our approach, 13 high-dimensional benchmark functions of diverse complexities are employed. The results show that our approach is effective and efficient. Compared with other state-of-the-art DE approaches, our approach performs better, or at least comparably, in terms of the quality of the final solutions and the reduction of the number of fitness function evaluations (NFFEs).
基于模糊c均值聚类的混合差分进化
本文提出了一种基于模糊c均值聚类算法的混合差分进化(DE)算法,简称FCDE。将模糊c均值聚类算法与聚类算法相结合,有效地利用种群信息,生成较好的解,提高了原有聚类算法的性能。此外,采用基于种群的算法生成器,利用聚类子代高效地更新种群。为了测试我们的方法的性能,我们使用了13个不同复杂度的高维基准函数。结果表明,该方法是有效的。与其他最先进的DE方法相比,我们的方法在最终解的质量和适应度函数评估(nffe)的数量减少方面表现更好,或者至少是相当的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信