A Backward Simulation Method for Stochastic Optimal Control Problems

Zhiyi Shen, Chengguo Weng
{"title":"A Backward Simulation Method for Stochastic Optimal Control Problems","authors":"Zhiyi Shen, Chengguo Weng","doi":"10.2139/ssrn.3319160","DOIUrl":null,"url":null,"abstract":"A number of optimal decision problems with uncertainty can be formulated into a stochastic optimal control framework. The Least-Squares Monte Carlo (LSMC) algorithm is a popular numerical method to approach solutions of such stochastic control problems as analytical solutions are not tractable in general. This paper generalizes the LSMC algorithm proposed in Shen and Weng (2017) to solve a wide class of stochastic optimal control models. Our algorithm has three pillars: a construction of auxiliary stochastic control model, an artificial simulation of the post-action value of state process, and a shape-preserving sieve estimation method which equip the algorithm with a number of merits including bypassing forward simulation and control randomization, evading extrapolating the value function, and alleviating computational burden of the tuning parameter selection. The efficacy of the algorithm is corroborated by an application to pricing equity-linked insurance products.","PeriodicalId":364869,"journal":{"name":"ERN: Simulation Methods (Topic)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Simulation Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3319160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

A number of optimal decision problems with uncertainty can be formulated into a stochastic optimal control framework. The Least-Squares Monte Carlo (LSMC) algorithm is a popular numerical method to approach solutions of such stochastic control problems as analytical solutions are not tractable in general. This paper generalizes the LSMC algorithm proposed in Shen and Weng (2017) to solve a wide class of stochastic optimal control models. Our algorithm has three pillars: a construction of auxiliary stochastic control model, an artificial simulation of the post-action value of state process, and a shape-preserving sieve estimation method which equip the algorithm with a number of merits including bypassing forward simulation and control randomization, evading extrapolating the value function, and alleviating computational burden of the tuning parameter selection. The efficacy of the algorithm is corroborated by an application to pricing equity-linked insurance products.
随机最优控制问题的逆向模拟方法
许多具有不确定性的最优决策问题可以被表述成一个随机最优控制框架。最小二乘蒙特卡罗(LSMC)算法是一种常用的数值方法,用于求解解析解一般难以处理的随机控制问题。本文推广了Shen和Weng(2017)提出的LSMC算法,以解决广泛的随机最优控制模型。该算法有三个支柱:辅助随机控制模型的构建、状态过程事后值的人工模拟和保形筛估计方法。该算法绕过正向模拟和控制随机化,避免了值函数的外推,减轻了整定参数选择的计算负担。通过对股票挂钩保险产品定价的应用,验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信