G. Cortela, K. M. Lima, L. Maggi, C. Negreira, W. Pereira
{"title":"Evaluation of acoustic and thermal properties of gellan-gum phantom to mimic biological tissue","authors":"G. Cortela, K. M. Lima, L. Maggi, C. Negreira, W. Pereira","doi":"10.1109/PAHCE.2015.7173326","DOIUrl":null,"url":null,"abstract":"A hydrogel-based (gellan gum) tissue mimicking material (TMM) was developed. Its acoustic and thermal properties were characterized. The hydrogel was combined with different sizes of glass spheres. The acoustic properties (attenuation coefficient and the speed of sound) were obtained as a function of the temperature range 20 to 45° C. Specific heat was determined experimentally by the standard mixture method for the same temperature range. The attenuation coefficient presented a quasi-linear dependence on the frequency, such as the most of mammalian tissues. The mean value was 0.59f 0,85 dB·cm-1, at 30° C from 1 to 10MHz. The results suggest that the developed TMM has potential for several applications: development of standard dosimetry techniques, validation numerical models and determination the efficacy of hyperthermia devices.","PeriodicalId":269877,"journal":{"name":"2015 Pan American Health Care Exchanges (PAHCE)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Pan American Health Care Exchanges (PAHCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PAHCE.2015.7173326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
A hydrogel-based (gellan gum) tissue mimicking material (TMM) was developed. Its acoustic and thermal properties were characterized. The hydrogel was combined with different sizes of glass spheres. The acoustic properties (attenuation coefficient and the speed of sound) were obtained as a function of the temperature range 20 to 45° C. Specific heat was determined experimentally by the standard mixture method for the same temperature range. The attenuation coefficient presented a quasi-linear dependence on the frequency, such as the most of mammalian tissues. The mean value was 0.59f 0,85 dB·cm-1, at 30° C from 1 to 10MHz. The results suggest that the developed TMM has potential for several applications: development of standard dosimetry techniques, validation numerical models and determination the efficacy of hyperthermia devices.