Parameter estimation of hyper-geometric distribution software reliability growth model by genetic algorithms

T. Minohara, Y. Tohma
{"title":"Parameter estimation of hyper-geometric distribution software reliability growth model by genetic algorithms","authors":"T. Minohara, Y. Tohma","doi":"10.1109/ISSRE.1995.497673","DOIUrl":null,"url":null,"abstract":"Usually, parameters in software reliability growth models are not known, and they must be estimated by using observed failure data. Several estimation methods have been proposed, but most of them have restrictions such as the existence of derivatives on evaluation functions. On the other hand, genetic algorithms (GA) provide us with robust optimization methods in many fields. We apply GA to the parameter estimation of the hyper-geometric distribution software reliability growth model. Experimental result shows that GA is effective in the parameter estimation and removes restrictions from software reliability growth models.","PeriodicalId":408394,"journal":{"name":"Proceedings of Sixth International Symposium on Software Reliability Engineering. ISSRE'95","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Sixth International Symposium on Software Reliability Engineering. ISSRE'95","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSRE.1995.497673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

Abstract

Usually, parameters in software reliability growth models are not known, and they must be estimated by using observed failure data. Several estimation methods have been proposed, but most of them have restrictions such as the existence of derivatives on evaluation functions. On the other hand, genetic algorithms (GA) provide us with robust optimization methods in many fields. We apply GA to the parameter estimation of the hyper-geometric distribution software reliability growth model. Experimental result shows that GA is effective in the parameter estimation and removes restrictions from software reliability growth models.
基于遗传算法的超几何分布软件可靠性增长模型参数估计
通常,软件可靠性增长模型中的参数是未知的,必须通过观察到的故障数据来估计。目前已经提出了几种估计方法,但大多数方法都存在评价函数上存在导数等限制。另一方面,遗传算法为我们在许多领域提供了鲁棒的优化方法。将遗传算法应用于超几何分布软件可靠性增长模型的参数估计。实验结果表明,遗传算法在参数估计方面是有效的,并且消除了软件可靠性增长模型的约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信