Béatrice Biancardi, Lou Maisonnave-Couterou, Pierrick Renault, Brian Ravenet, M. Mancini, G. Varni
{"title":"The WoNoWa Dataset: Investigating the Transactive Memory System in Small Group Interactions","authors":"Béatrice Biancardi, Lou Maisonnave-Couterou, Pierrick Renault, Brian Ravenet, M. Mancini, G. Varni","doi":"10.1145/3382507.3418843","DOIUrl":null,"url":null,"abstract":"We present WoNoWa, a novel multi-modal dataset of small group interactions in collaborative tasks. The dataset is explicitly designed to elicit and to study over time a Transactive Memory System (TMS), a group's emergent state characterizing the group's meta-knowledge about \"who knows what\". A rich set of automatic features and manual annotations, extracted from the collected audio-visual data, is available on request for research purposes. Features include individual descriptors (e.g., position, Quantity of Motion, speech activity) and group descriptors (e.g., F-formations). Additionally, participants' self-assessments are available. Preliminary results from exploratory analyses show that the WoNoWa design allowed groups to develop a TMS that increased across the tasks. These results encourage the use of the WoNoWa dataset for a better understanding of the relationship between behavioural patterns and TMS, that in turn could help to improve group performance.","PeriodicalId":402394,"journal":{"name":"Proceedings of the 2020 International Conference on Multimodal Interaction","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3382507.3418843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
We present WoNoWa, a novel multi-modal dataset of small group interactions in collaborative tasks. The dataset is explicitly designed to elicit and to study over time a Transactive Memory System (TMS), a group's emergent state characterizing the group's meta-knowledge about "who knows what". A rich set of automatic features and manual annotations, extracted from the collected audio-visual data, is available on request for research purposes. Features include individual descriptors (e.g., position, Quantity of Motion, speech activity) and group descriptors (e.g., F-formations). Additionally, participants' self-assessments are available. Preliminary results from exploratory analyses show that the WoNoWa design allowed groups to develop a TMS that increased across the tasks. These results encourage the use of the WoNoWa dataset for a better understanding of the relationship between behavioural patterns and TMS, that in turn could help to improve group performance.