A parallel algorithm for finding a separator in planar graphs

Hillel Gazit, G. Miller
{"title":"A parallel algorithm for finding a separator in planar graphs","authors":"Hillel Gazit, G. Miller","doi":"10.1109/SFCS.1987.3","DOIUrl":null,"url":null,"abstract":"We present a randomized parallel algorithm for finding a simple cycle separator in a planar graph. The size of the separator is O(√n) and it separates the graph so that the largest part contains at most 2/8 ¿ n vertices. Our algorithm takes T = O(log2(n)) time and P = O(n + f1+ε) processors, where n is the number of vertices, f is the number of faces and ε is any positive constant. The algorithm is based on the solution of Lipton and Tarjan [8] for the sequential case which takes O(n) time. Combining our algorithm with the Pan and Reif [12] algorithm, enables us to find a BFS of planar graph in time O(log3(n)) using n1.5/log(n) processors. Using a variation of our algorithm we can construct a simple cycle separator of size O(d ¿ √f) were d is maximum face size.","PeriodicalId":153779,"journal":{"name":"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1987.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

Abstract

We present a randomized parallel algorithm for finding a simple cycle separator in a planar graph. The size of the separator is O(√n) and it separates the graph so that the largest part contains at most 2/8 ¿ n vertices. Our algorithm takes T = O(log2(n)) time and P = O(n + f1+ε) processors, where n is the number of vertices, f is the number of faces and ε is any positive constant. The algorithm is based on the solution of Lipton and Tarjan [8] for the sequential case which takes O(n) time. Combining our algorithm with the Pan and Reif [12] algorithm, enables us to find a BFS of planar graph in time O(log3(n)) using n1.5/log(n) processors. Using a variation of our algorithm we can construct a simple cycle separator of size O(d ¿ √f) were d is maximum face size.
在平面图形中寻找分隔符的并行算法
提出了一种在平面图形中寻找简单循环分隔符的随机并行算法。分隔符的大小为0(√n),它分隔图形,使最大的部分最多包含2/8¿n个顶点。我们的算法需要T = O(log2(n))时间和P = O(n + f1+ε)个处理器,其中n是顶点的数量,f是面的数量,ε是任意正常数。该算法基于Lipton和Tarjan[8]对序列情况的求解,耗时为O(n)。将我们的算法与Pan和Reif[12]算法相结合,使我们能够使用n1.5/log(n)个处理器在时间O(log3(n))内找到平面图的BFS。使用我们算法的一种变体,我们可以构造一个简单的循环分离器,大小为O(d¿√f),其中d是最大的面尺寸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信