{"title":"Comparative analysis of the nucleotide composition biases in exons and introns of human genes","authors":"D. Duplij","doi":"10.7124/BC.0007B4","DOIUrl":null,"url":null,"abstract":"The nucleotide composition of human genes with a special emphasis on transcription-related strand asymmetries is analyzed. Such asymmetries may be associated with different mutational rates in two principal factors. The first one is transcription-coupled repair and the second one is the selective pressure related to optimization of the translation efficiency. The former factor affects both coding and noncoding regions of a gene, while the latter factor is applicable only to the coding regions. Compositional asymmetries calculated at the third position of a codon in coding (exons) and noncoding (introns, UTR, upstream and downstream) regions of human genes are compared. It is shown that the keto-skew (excess of the frequencies of G and T nucleotides over the frequencies of A and C nucleotides in the same strand) is most pronounced in intronic regions, less pronounced in coding regions, and has near zero values in untranscribed regions. The keto-skew correlates with the level of gene expression in germ-line cells in both introns and exons. We propose to use the results of our analysis to estimate the contribution of different evolutionary factors to the transcription-related compositional biases.","PeriodicalId":119149,"journal":{"name":"arXiv: Quantitative Methods","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7124/BC.0007B4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The nucleotide composition of human genes with a special emphasis on transcription-related strand asymmetries is analyzed. Such asymmetries may be associated with different mutational rates in two principal factors. The first one is transcription-coupled repair and the second one is the selective pressure related to optimization of the translation efficiency. The former factor affects both coding and noncoding regions of a gene, while the latter factor is applicable only to the coding regions. Compositional asymmetries calculated at the third position of a codon in coding (exons) and noncoding (introns, UTR, upstream and downstream) regions of human genes are compared. It is shown that the keto-skew (excess of the frequencies of G and T nucleotides over the frequencies of A and C nucleotides in the same strand) is most pronounced in intronic regions, less pronounced in coding regions, and has near zero values in untranscribed regions. The keto-skew correlates with the level of gene expression in germ-line cells in both introns and exons. We propose to use the results of our analysis to estimate the contribution of different evolutionary factors to the transcription-related compositional biases.