Comparative analysis of the nucleotide composition biases in exons and introns of human genes

D. Duplij
{"title":"Comparative analysis of the nucleotide composition biases in exons and introns of human genes","authors":"D. Duplij","doi":"10.7124/BC.0007B4","DOIUrl":null,"url":null,"abstract":"The nucleotide composition of human genes with a special emphasis on transcription-related strand asymmetries is analyzed. Such asymmetries may be associated with different mutational rates in two principal factors. The first one is transcription-coupled repair and the second one is the selective pressure related to optimization of the translation efficiency. The former factor affects both coding and noncoding regions of a gene, while the latter factor is applicable only to the coding regions. Compositional asymmetries calculated at the third position of a codon in coding (exons) and noncoding (introns, UTR, upstream and downstream) regions of human genes are compared. It is shown that the keto-skew (excess of the frequencies of G and T nucleotides over the frequencies of A and C nucleotides in the same strand) is most pronounced in intronic regions, less pronounced in coding regions, and has near zero values in untranscribed regions. The keto-skew correlates with the level of gene expression in germ-line cells in both introns and exons. We propose to use the results of our analysis to estimate the contribution of different evolutionary factors to the transcription-related compositional biases.","PeriodicalId":119149,"journal":{"name":"arXiv: Quantitative Methods","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7124/BC.0007B4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The nucleotide composition of human genes with a special emphasis on transcription-related strand asymmetries is analyzed. Such asymmetries may be associated with different mutational rates in two principal factors. The first one is transcription-coupled repair and the second one is the selective pressure related to optimization of the translation efficiency. The former factor affects both coding and noncoding regions of a gene, while the latter factor is applicable only to the coding regions. Compositional asymmetries calculated at the third position of a codon in coding (exons) and noncoding (introns, UTR, upstream and downstream) regions of human genes are compared. It is shown that the keto-skew (excess of the frequencies of G and T nucleotides over the frequencies of A and C nucleotides in the same strand) is most pronounced in intronic regions, less pronounced in coding regions, and has near zero values in untranscribed regions. The keto-skew correlates with the level of gene expression in germ-line cells in both introns and exons. We propose to use the results of our analysis to estimate the contribution of different evolutionary factors to the transcription-related compositional biases.
人类基因外显子和内含子核苷酸组成偏倚的比较分析
人类基因的核苷酸组成,特别强调转录相关的链不对称分析。这种不对称可能与两个主要因素的不同突变率有关。第一个是转录偶联修复,第二个是与翻译效率优化相关的选择压力。前者影响基因的编码区和非编码区,后者只影响编码区。比较了人类基因编码区(外显子)和非编码区(内含子、UTR、上游和下游)密码子第三位的不对称性。结果表明,酮偏(同一链中G和T核苷酸的频率超过A和C核苷酸的频率)在内含子区最为明显,在编码区不太明显,在非转录区接近零值。酮偏与种系细胞中内含子和外显子的基因表达水平相关。我们建议使用我们的分析结果来估计不同的进化因素对转录相关的组成偏差的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信