An improved deep learning-based approach for sentiment mining

N. Sharef, M. Y. Shafazand
{"title":"An improved deep learning-based approach for sentiment mining","authors":"N. Sharef, M. Y. Shafazand","doi":"10.1109/WICT.2014.7077291","DOIUrl":null,"url":null,"abstract":"The sentiment mining approaches can typically be divided into lexicon and machine learning approaches. Recently there are an increasing number of approaches which combine both to improve the performance when used separately. However, this still lacks contextual understanding which led to the introduction of deep learning approaches which allows for semantic compositionality over a sentiment treebank. This paper enhances the deep learning approach with semantic lexicon so that scores can be computed in-stead merely nominal classification. Besides, neutral classification is also improved. Results suggest that the approach outperforms its original.","PeriodicalId":439852,"journal":{"name":"2014 4th World Congress on Information and Communication Technologies (WICT 2014)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 4th World Congress on Information and Communication Technologies (WICT 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WICT.2014.7077291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The sentiment mining approaches can typically be divided into lexicon and machine learning approaches. Recently there are an increasing number of approaches which combine both to improve the performance when used separately. However, this still lacks contextual understanding which led to the introduction of deep learning approaches which allows for semantic compositionality over a sentiment treebank. This paper enhances the deep learning approach with semantic lexicon so that scores can be computed in-stead merely nominal classification. Besides, neutral classification is also improved. Results suggest that the approach outperforms its original.
一种基于深度学习的情感挖掘改进方法
情感挖掘方法通常可以分为词典和机器学习方法。最近有越来越多的方法将两者结合起来以提高单独使用时的性能。然而,这仍然缺乏上下文理解,这导致了深度学习方法的引入,这种方法允许在情感树库上实现语义组合。本文利用语义词典对深度学习方法进行了改进,从而可以计算分数,而不仅仅是名义分类。此外,对中性分类也进行了改进。结果表明,该方法优于原来的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信