Is Disaggregation possible for HPC Cognitive Simulation?

Michael R. Wyatt, Valen Yamamoto, Zoë Tosi, I. Karlin, B. V. Essen
{"title":"Is Disaggregation possible for HPC Cognitive Simulation?","authors":"Michael R. Wyatt, Valen Yamamoto, Zoë Tosi, I. Karlin, B. V. Essen","doi":"10.1109/mlhpc54614.2021.00014","DOIUrl":null,"url":null,"abstract":"Cognitive simulation (CogSim) is an important and emerging workflow for HPC scientific exploration and scientific machine learning (SciML). One challenging workload for CogSim is the replacement of one component in a complex physical simulation with a fast, learned, surrogate model that is “inside” of the computational loop. The execution of this in-the-loop inference is particularly challenging because it requires frequent inference across multiple possible target models, can be on the simulation’s critical path (latency bound), is subject to requests from multiple MPI ranks, and typically contains a small number of samples per request. In this paper we explore the use of large, dedicated Deep Learning / AI accelerators that are disaggregated from compute nodes for this CogSim workload. We compare the trade-offs of using these accelerators versus the node-local GPU accelerators on leadership-class HPC systems.","PeriodicalId":101642,"journal":{"name":"2021 IEEE/ACM Workshop on Machine Learning in High Performance Computing Environments (MLHPC)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM Workshop on Machine Learning in High Performance Computing Environments (MLHPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mlhpc54614.2021.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Cognitive simulation (CogSim) is an important and emerging workflow for HPC scientific exploration and scientific machine learning (SciML). One challenging workload for CogSim is the replacement of one component in a complex physical simulation with a fast, learned, surrogate model that is “inside” of the computational loop. The execution of this in-the-loop inference is particularly challenging because it requires frequent inference across multiple possible target models, can be on the simulation’s critical path (latency bound), is subject to requests from multiple MPI ranks, and typically contains a small number of samples per request. In this paper we explore the use of large, dedicated Deep Learning / AI accelerators that are disaggregated from compute nodes for this CogSim workload. We compare the trade-offs of using these accelerators versus the node-local GPU accelerators on leadership-class HPC systems.
在HPC认知模拟中,分解是可能的吗?
认知模拟(Cognitive simulation, CogSim)是高性能计算科学探索和科学机器学习(scientific machine learning, SciML)中一个重要的新兴工作流程。CogSim的一个具有挑战性的工作负载是用计算循环“内部”的快速、可学习的代理模型替换复杂物理模拟中的一个组件。这种循环内推理的执行特别具有挑战性,因为它需要跨多个可能的目标模型进行频繁的推理,可能在模拟的关键路径上(延迟限制),受到来自多个MPI等级的请求的影响,并且每个请求通常包含少量样本。在本文中,我们探索了使用大型的、专用的深度学习/人工智能加速器,这些加速器是从计算节点分解出来的,用于此CogSim工作负载。我们比较了在领导级HPC系统上使用这些加速器与节点本地GPU加速器的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信