An Optimal Frontier Enhanced “Next Best View” Planner For Autonomous Exploration

Liang Lu, A. Luca, L. Muratore, N. Tsagarakis
{"title":"An Optimal Frontier Enhanced “Next Best View” Planner For Autonomous Exploration","authors":"Liang Lu, A. Luca, L. Muratore, N. Tsagarakis","doi":"10.1109/Humanoids53995.2022.10000175","DOIUrl":null,"url":null,"abstract":"This work introduces a novel Optimal Frontier Enhanced “Next Best View” Planner (OFENBVP), which can enable autonomous exploration capabilities in mobile robots. The proposed planner combines a local “Next Best View” (NBV) planner and an optimal frontier-based global enhancement algorithm. The local NBV planner takes charge of exploring a small area surrounding the robot while the optimal frontier-based global enhancement algorithm is in charge of moving the robot to a new unexplored area after a certain number of iterations of the local NBV planner. The proposed method is implemented and validated on the hybrid mobility platform CENTAURO performing an exploration task, demonstrating much less time to complete the exploration of the environment.","PeriodicalId":180816,"journal":{"name":"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Humanoids53995.2022.10000175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This work introduces a novel Optimal Frontier Enhanced “Next Best View” Planner (OFENBVP), which can enable autonomous exploration capabilities in mobile robots. The proposed planner combines a local “Next Best View” (NBV) planner and an optimal frontier-based global enhancement algorithm. The local NBV planner takes charge of exploring a small area surrounding the robot while the optimal frontier-based global enhancement algorithm is in charge of moving the robot to a new unexplored area after a certain number of iterations of the local NBV planner. The proposed method is implemented and validated on the hybrid mobility platform CENTAURO performing an exploration task, demonstrating much less time to complete the exploration of the environment.
一种用于自主探索的优化边界增强“下一个最佳视图”规划器
这项工作介绍了一种新的优化边界增强“下一个最佳视图”规划器(OFENBVP),它可以实现移动机器人的自主探索能力。该规划方法结合了局部“次优视图”规划和基于最优边界的全局增强算法。局部NBV规划器负责探索机器人周围的小区域,基于最优边界的全局增强算法负责在局部NBV规划器进行一定次数的迭代后,将机器人移动到一个新的未探索区域。该方法在执行勘探任务的混合移动平台CENTAURO上进行了实施和验证,证明了完成环境勘探的时间大大缩短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信