{"title":"A MEMS piezoelectric in-plane resonant accelerometer with two-stage micro-leverage mechanism","authors":"Yixiang Wang, Hong Ding, Xianhao Le, Jin Xie","doi":"10.1109/NEMS.2016.7758289","DOIUrl":null,"url":null,"abstract":"In this paper, we firstly present a MEMS (microelectromechanical systems) piezoelectric in-plane resonant accelerometer with two-stage micro-leverage mechanism. Double ended tuning fork (DETF) resonators are actuated and sensed by piezoelectric transduction with aluminum nitride (AlN). Optimized configuration of DETF resonators and two-stage micro-leverage mechanism are proposed to enhance sensitivity of the resonant accelerometer. The preliminary characterization of the device was tested in a vacuum chamber at the pressure of 4 mTorr. The sensitivity of the device is 28.4Hz/g at the base frequency around 141 kHz (201 ppm/g), which is higher than the previously reported data.","PeriodicalId":150449,"journal":{"name":"2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2016.7758289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, we firstly present a MEMS (microelectromechanical systems) piezoelectric in-plane resonant accelerometer with two-stage micro-leverage mechanism. Double ended tuning fork (DETF) resonators are actuated and sensed by piezoelectric transduction with aluminum nitride (AlN). Optimized configuration of DETF resonators and two-stage micro-leverage mechanism are proposed to enhance sensitivity of the resonant accelerometer. The preliminary characterization of the device was tested in a vacuum chamber at the pressure of 4 mTorr. The sensitivity of the device is 28.4Hz/g at the base frequency around 141 kHz (201 ppm/g), which is higher than the previously reported data.