Linking Medications and Their Attributes in Clinical Notes and Clinical Trial Announcements for Information Extraction: A Sequence Labeling Approach

Qi Li, Haijun Zhai, Louise Deléger, T. Lingren, M. Kaiser, Laura Stoutenborough, I. Solti
{"title":"Linking Medications and Their Attributes in Clinical Notes and Clinical Trial Announcements for Information Extraction: A Sequence Labeling Approach","authors":"Qi Li, Haijun Zhai, Louise Deléger, T. Lingren, M. Kaiser, Laura Stoutenborough, I. Solti","doi":"10.1109/HISB.2012.27","DOIUrl":null,"url":null,"abstract":"The goal of this work is to evaluate binary classification and sequence labeling methods for medication-attribute linkage detection in two clinical corpora. The results show that with parsimonious feature sets both the Support Vector Machine (SVM)-based binary classification and Conditional Random Field (CRF)-based multi-layered sequence labeling methods are achieving high performance.","PeriodicalId":375089,"journal":{"name":"2012 IEEE Second International Conference on Healthcare Informatics, Imaging and Systems Biology","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Second International Conference on Healthcare Informatics, Imaging and Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HISB.2012.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of this work is to evaluate binary classification and sequence labeling methods for medication-attribute linkage detection in two clinical corpora. The results show that with parsimonious feature sets both the Support Vector Machine (SVM)-based binary classification and Conditional Random Field (CRF)-based multi-layered sequence labeling methods are achieving high performance.
链接药物及其属性在临床笔记和临床试验公告的信息提取:序列标记方法
本研究的目的是评估二分类和序列标记方法在两种临床语料库中的药物属性连锁检测。结果表明,基于支持向量机(SVM)的二值分类方法和基于条件随机场(CRF)的多层序列标记方法在特征集简洁的情况下均能取得较高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信