{"title":"Control theoretic properties of physiological controller motifs","authors":"K. Thorsen, P. Ruoff, T. Drengstig","doi":"10.1109/ICSSE.2013.6614653","DOIUrl":null,"url":null,"abstract":"Identifying biophysical mechanisms that provide regulation and control is essential for our understanding of living systems. However, the distance between life sciences and control theory can be a challenge. Here, we describe, and show the control theoretic properties of a set of biochemical reaction schemes, so-called controller motifs. These controller motifs have similarities with industrial control systems, and have properties such as setpoints, integral gain, and setpoint weight. Once identified, a system understanding of such mechanisms can help synthetic biologists in selecting suitable targets to alter in construction of new biological systems. From a control theoretic viewpoint we identify which biochemical rate constant or property affect the setpoint and the dynamic response of a biophysical controller motif. We also show how a biological system consisting of two antagonistic regulatory mechanisms can be compared to a control engineering problem of controlling the water level in a tank. The similarity between biological systems and control engineering provides theoretical insight, and clears the way to an engineer's approach to synthetic biology.","PeriodicalId":124317,"journal":{"name":"2013 International Conference on System Science and Engineering (ICSSE)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on System Science and Engineering (ICSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSE.2013.6614653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Identifying biophysical mechanisms that provide regulation and control is essential for our understanding of living systems. However, the distance between life sciences and control theory can be a challenge. Here, we describe, and show the control theoretic properties of a set of biochemical reaction schemes, so-called controller motifs. These controller motifs have similarities with industrial control systems, and have properties such as setpoints, integral gain, and setpoint weight. Once identified, a system understanding of such mechanisms can help synthetic biologists in selecting suitable targets to alter in construction of new biological systems. From a control theoretic viewpoint we identify which biochemical rate constant or property affect the setpoint and the dynamic response of a biophysical controller motif. We also show how a biological system consisting of two antagonistic regulatory mechanisms can be compared to a control engineering problem of controlling the water level in a tank. The similarity between biological systems and control engineering provides theoretical insight, and clears the way to an engineer's approach to synthetic biology.