{"title":"Cooperative Encirclement Control for a Group of Targets by Decentralized Robots with Collision Avoidance","authors":"Junchong Ma, Weijia Yao, Wei Dai, Huimin Lu, Junhao Xiao, Zhiqiang Zheng","doi":"10.23919/CHICC.2018.8483768","DOIUrl":null,"url":null,"abstract":"This study focuses on multi-target capture and encirclement control problem for multiple mobile robots. With the distributed architecture, this problem involves a group of robots to encircle several moving targets in a coordinated circle formation. In order to efficiently allocate the targets to robots, a Hybrid Dynamic Task Allocation (HDTA) algorithm was proposed, in which a temporary “manager” robot was assigned to negotiate with other robots. For encirclement formation, a robust control law was introduced for any number of mobile robots to form a specific circle formation with arbitrary inter-robot angular spacing. In view of safety, an online collision avoidance algorithm combining the sub-targets and Artificial Potential Fields (APF) approaches was proposed, which ensures that the paths of robots are collision-free. To prove the validity and robustness of the proposed scheme, both theoretical analysis and simulation experiments were conducted.","PeriodicalId":158442,"journal":{"name":"2018 37th Chinese Control Conference (CCC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 37th Chinese Control Conference (CCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CHICC.2018.8483768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
This study focuses on multi-target capture and encirclement control problem for multiple mobile robots. With the distributed architecture, this problem involves a group of robots to encircle several moving targets in a coordinated circle formation. In order to efficiently allocate the targets to robots, a Hybrid Dynamic Task Allocation (HDTA) algorithm was proposed, in which a temporary “manager” robot was assigned to negotiate with other robots. For encirclement formation, a robust control law was introduced for any number of mobile robots to form a specific circle formation with arbitrary inter-robot angular spacing. In view of safety, an online collision avoidance algorithm combining the sub-targets and Artificial Potential Fields (APF) approaches was proposed, which ensures that the paths of robots are collision-free. To prove the validity and robustness of the proposed scheme, both theoretical analysis and simulation experiments were conducted.