Stability in Matching Markets with Complex Constraints

Thành Nguyen, Hai Nguyen, A. Teytelboym
{"title":"Stability in Matching Markets with Complex Constraints","authors":"Thành Nguyen, Hai Nguyen, A. Teytelboym","doi":"10.1145/3328526.3329639","DOIUrl":null,"url":null,"abstract":"We consider a new model of many-to-one matching markets in which agents with multi-unit demand aim to maximize a cardinal linear objective subject to multidimensional knapsack constraints. The choice functions of agents with multi-unit demand are therefore not substitutable. As a result, pairwise stable matchings may not exist and, even when they do, may be highly inefficient. We provide an algorithm that finds a group-stable matching that approximately satisfies all the multidimensional knapsack constraints. The degree of the constraint violation is proportional to the sparsity of the constraint matrix. The algorithm therefore provides practical error bounds for applications in several contexts, such as refugee resettlement, matching of children to daycare centers, and meeting diversity requirements in colleges. A novel ingredient in our algorithm is a combination of matching with contracts and Scarf's Lemma.","PeriodicalId":416173,"journal":{"name":"Proceedings of the 2019 ACM Conference on Economics and Computation","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 ACM Conference on Economics and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3328526.3329639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

We consider a new model of many-to-one matching markets in which agents with multi-unit demand aim to maximize a cardinal linear objective subject to multidimensional knapsack constraints. The choice functions of agents with multi-unit demand are therefore not substitutable. As a result, pairwise stable matchings may not exist and, even when they do, may be highly inefficient. We provide an algorithm that finds a group-stable matching that approximately satisfies all the multidimensional knapsack constraints. The degree of the constraint violation is proportional to the sparsity of the constraint matrix. The algorithm therefore provides practical error bounds for applications in several contexts, such as refugee resettlement, matching of children to daycare centers, and meeting diversity requirements in colleges. A novel ingredient in our algorithm is a combination of matching with contracts and Scarf's Lemma.
具有复杂约束的匹配市场的稳定性
我们考虑了一个新的多对一匹配市场模型,在该模型中,具有多单位需求的智能体的目标是在多维背包约束下最大化一个基本线性目标。因此,具有多单位需求的主体的选择函数是不可替代的。因此,成对稳定匹配可能不存在,即使存在,也可能效率极低。我们提供了一种算法来寻找一个近似满足所有多维背包约束的群稳定匹配。约束违反的程度与约束矩阵的稀疏度成正比。因此,该算法为一些情况下的应用提供了实际的误差范围,例如难民安置,儿童与日托中心的匹配,以及满足大学的多样性要求。我们的算法中一个新颖的成分是契约匹配和斯卡夫引理的结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信