Reducing the Memory Footprint of an Eikonal Solver

Daniel Ganellari, G. Haase
{"title":"Reducing the Memory Footprint of an Eikonal Solver","authors":"Daniel Ganellari, G. Haase","doi":"10.1109/HPCS.2017.57","DOIUrl":null,"url":null,"abstract":"The numerical solution of the Eikonal equation follows the fast iterative method with its application for tetrahe-dral meshes. Therein the main operations in each discretization element τ contain various inner products in the M-metric as ($e^{\\rarr}$k,s,$e^{\\rarr}$s,ℓMτ $e^{\\rarr}$Tk,s · Mτ · $e^{\\rarr}$s,ℓ with $e^{\\rarr}$s,ℓ as connecting edge between vertices s and ℓ in element τ. Instead of passing all coordinates of the tetrahedron together with the 6 entries of Mτ we precompute these inner products and use only them in the wave front computation. This first change requires less memory transfers for each tetrahedron. The second change is caused by the fact that ($e^{\\rarr}$k,s,$e^{\\rarr}$s, ℓMτ (k ≠ℓ) represents an angle of a surface triangle whereas $e^{\\rarr}$k,s,$e^{\\rarr}$k,smτ represents the length of an edge in the M- metric. Basic geometry as well as vector arithmetics yield to the conclusion that the angle information can be expressed by the combination of three edge lengths. Therefore we only have to precompute the 6 edge lengths of a tetrahedron and compute the remaining 12 angle data on-the-fly which reduces the memory footprint per tetrahedron to 6 numbers. The efficient implementation of the two changes requires a local Gray-code numbering of edges in the tetrahedron and a bunch of bit shifts to assign the appropriate data. First numerical experiments on CPUs show that the reduced memory footprint approach is faster than the original implementation. Detailed investigations as well as a CUDA implementation are ongoing work.","PeriodicalId":115758,"journal":{"name":"2017 International Conference on High Performance Computing & Simulation (HPCS)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCS.2017.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The numerical solution of the Eikonal equation follows the fast iterative method with its application for tetrahe-dral meshes. Therein the main operations in each discretization element τ contain various inner products in the M-metric as ($e^{\rarr}$k,s,$e^{\rarr}$s,ℓMτ $e^{\rarr}$Tk,s · Mτ · $e^{\rarr}$s,ℓ with $e^{\rarr}$s,ℓ as connecting edge between vertices s and ℓ in element τ. Instead of passing all coordinates of the tetrahedron together with the 6 entries of Mτ we precompute these inner products and use only them in the wave front computation. This first change requires less memory transfers for each tetrahedron. The second change is caused by the fact that ($e^{\rarr}$k,s,$e^{\rarr}$s, ℓMτ (k ≠ℓ) represents an angle of a surface triangle whereas $e^{\rarr}$k,s,$e^{\rarr}$k,smτ represents the length of an edge in the M- metric. Basic geometry as well as vector arithmetics yield to the conclusion that the angle information can be expressed by the combination of three edge lengths. Therefore we only have to precompute the 6 edge lengths of a tetrahedron and compute the remaining 12 angle data on-the-fly which reduces the memory footprint per tetrahedron to 6 numbers. The efficient implementation of the two changes requires a local Gray-code numbering of edges in the tetrahedron and a bunch of bit shifts to assign the appropriate data. First numerical experiments on CPUs show that the reduced memory footprint approach is faster than the original implementation. Detailed investigations as well as a CUDA implementation are ongoing work.
减少Eikonal求解器的内存占用
Eikonal方程的数值解遵循快速迭代法,并应用于四面体网格。其中,每个离散化元素τ的主要运算包含m -度量中的各种内积为($e^{\rarr}$k,s,$e^{\rarr}$s, $ Mτ $e^{\rarr}$Tk,s·Mτ·$e^{\rarr}$s,与$e^{\rarr}$s, $e^{\rarr}$s,在元素τ中,$e^{\rarr}$s之间的连接边。我们没有将四面体的所有坐标与Mτ的6个分量一起传递,而是预先计算了这些内积,并仅在波前计算中使用它们。第一个更改需要减少每个四面体的内存传输。第二个变化是由以下事实引起的:($e^{\rarr}$k,s,$e^{\rarr}$s, r Mτ (k≠r)表示曲面三角形的一个角,而$e^{\rarr}$k,s,$e^{\rarr}$k,smτ表示M-度量中边的长度。根据基本几何和矢量运算得出的结论是,角度信息可以用三条边长度的组合来表示。因此,我们只需要预先计算一个四面体的6个边长度,并计算剩余的12个角度数据,这将每个四面体的内存占用减少到6个数字。这两种变化的有效实现需要对四面体中的边缘进行局部灰度编码编号,并进行一堆位移位来分配适当的数据。首先在cpu上进行的数值实验表明,减少内存占用的方法比原来的实现要快。详细的调查以及CUDA的实现正在进行中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信