Bayesian Variable Selection for the Seemingly Unrelated Regression Models with a Large Number of Predictors

T. Ando
{"title":"Bayesian Variable Selection for the Seemingly Unrelated Regression Models with a Large Number of Predictors","authors":"T. Ando","doi":"10.14490/JJSS.41.187","DOIUrl":null,"url":null,"abstract":"Computationally efficient methods for Bayesian analysis of Seemingly Unrelated Regression (SUR) models with a large number of predictors are developed. One of the most crucial problems in Bayesian modeling of SUR models is how to determine the optimal combination of predictors. In this paper, under a Bayesian hierarchical framework where each regression function is represented as a linear combination of a large number of basis functions, the regression coefficients, the variance matrix of the errors, and a set of predictors to be included in the model are estimated simultaneously. Usually the Bayesian model estimation problem is solved using Markov Chain Monte Carlo (MCMC) techniques. Herein we show how a direct Monte Carlo (DMC) technique can be employed to solve the variable selection and model parameter estimation problems more efficiently.","PeriodicalId":326924,"journal":{"name":"Journal of the Japan Statistical Society. Japanese issue","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japan Statistical Society. Japanese issue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14490/JJSS.41.187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Computationally efficient methods for Bayesian analysis of Seemingly Unrelated Regression (SUR) models with a large number of predictors are developed. One of the most crucial problems in Bayesian modeling of SUR models is how to determine the optimal combination of predictors. In this paper, under a Bayesian hierarchical framework where each regression function is represented as a linear combination of a large number of basis functions, the regression coefficients, the variance matrix of the errors, and a set of predictors to be included in the model are estimated simultaneously. Usually the Bayesian model estimation problem is solved using Markov Chain Monte Carlo (MCMC) techniques. Herein we show how a direct Monte Carlo (DMC) technique can be employed to solve the variable selection and model parameter estimation problems more efficiently.
具有大量预测因子的看似不相关回归模型的贝叶斯变量选择
提出了具有大量预测因子的表面不相关回归(SUR)模型的贝叶斯分析的高效计算方法。SUR模型贝叶斯建模中最关键的问题之一是如何确定预测因子的最优组合。本文在贝叶斯层次框架下,将每个回归函数表示为大量基函数的线性组合,同时估计回归系数、误差的方差矩阵和一组拟包含在模型中的预测因子。通常使用马尔可夫链蒙特卡罗(MCMC)技术来解决贝叶斯模型估计问题。在此,我们展示了如何使用直接蒙特卡罗(DMC)技术来更有效地解决变量选择和模型参数估计问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信