An Unscented Kalm an Filter-Based MultisensorTrack Fusion Algorithm

Huijuan Yang, Jian Qiu Zhang
{"title":"An Unscented Kalm an Filter-Based MultisensorTrack Fusion Algorithm","authors":"Huijuan Yang, Jian Qiu Zhang","doi":"10.1109/IMTC.2005.1604172","DOIUrl":null,"url":null,"abstract":"In this paper, an unscented Kalman filter (UKF)-based track fusion algorithm is developed for tracking targets in a nonlinear multisensor system. Employing the unscented Kalman filter and the measurements of the individual sensor in the multisensor system, the means and the variances of the states of a tracked target can be estimate. Based on these estimate results, an optimum state fusion scheme is obtained in terms of minimum mean square error (MMSE). The scheme can make the variance of the fused states smaller than that of the states estimated by UKF with any individual sensor in this multisensor system. Simulation results confirm the efficiency of the presented algorithm","PeriodicalId":244878,"journal":{"name":"2005 IEEE Instrumentationand Measurement Technology Conference Proceedings","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Instrumentationand Measurement Technology Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMTC.2005.1604172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, an unscented Kalman filter (UKF)-based track fusion algorithm is developed for tracking targets in a nonlinear multisensor system. Employing the unscented Kalman filter and the measurements of the individual sensor in the multisensor system, the means and the variances of the states of a tracked target can be estimate. Based on these estimate results, an optimum state fusion scheme is obtained in terms of minimum mean square error (MMSE). The scheme can make the variance of the fused states smaller than that of the states estimated by UKF with any individual sensor in this multisensor system. Simulation results confirm the efficiency of the presented algorithm
一种基于Unscented Kalm滤波的多传感器轨迹融合算法
针对非线性多传感器系统中的目标跟踪问题,提出了一种基于无气味卡尔曼滤波(UKF)的航迹融合算法。利用无气味卡尔曼滤波和多传感器系统中单个传感器的测量值,可以估计被跟踪目标状态的均值和方差。基于这些估计结果,得到了一种基于最小均方误差(MMSE)的最佳状态融合方案。该方案可以使多传感器系统中任意单个传感器的融合状态方差小于UKF估计的状态方差。仿真结果验证了该算法的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信