Predicting of microbe-drug associations via a pre-completion-based label propagation algorithm

Haochen Zhao, Guihua Duan, Botu Yang, Suning Li, Jianxin Wang
{"title":"Predicting of microbe-drug associations via a pre-completion-based label propagation algorithm","authors":"Haochen Zhao, Guihua Duan, Botu Yang, Suning Li, Jianxin Wang","doi":"10.1109/BIBM55620.2022.9995475","DOIUrl":null,"url":null,"abstract":"Identifying microbe-drug associations is important to systematically understand a drug’s mechanism of action in the therapeutic application. Since identifying microbe-drug associations is expensive and time-consuming via biological experiments, in this study, we propose a Pre-completion-based Label Propagation (PLP) method (called PLPMDA) to predict microbe-drug associations based on the multi-type similarities. To obtain richer information of drugs and microbes, we calculate drug chemical structure similarity, drug Anatomical Therapeutic Chemical (ATC) code similarity, microbe functional similarity, microbe sequence similarity and Gaussian Interaction Profile (GIP) kernel similarities of microbes and drugs, and then introduce a non-linear similarity fusion method. Comparing baseline methods, our advantage lies in performing an effective pre-completion step on the initial association matrix from the drug-related and microbe-related information and does not rely on the known drug-microbe associations, which can accelerate the design and discovery of the new drugs. The computational experiment results demonstrate that our proposed approach PLPMDA achieves significantly higher performance than the comparative methods in de novo and cross-validation experiments.","PeriodicalId":210337,"journal":{"name":"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"14 9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM55620.2022.9995475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Identifying microbe-drug associations is important to systematically understand a drug’s mechanism of action in the therapeutic application. Since identifying microbe-drug associations is expensive and time-consuming via biological experiments, in this study, we propose a Pre-completion-based Label Propagation (PLP) method (called PLPMDA) to predict microbe-drug associations based on the multi-type similarities. To obtain richer information of drugs and microbes, we calculate drug chemical structure similarity, drug Anatomical Therapeutic Chemical (ATC) code similarity, microbe functional similarity, microbe sequence similarity and Gaussian Interaction Profile (GIP) kernel similarities of microbes and drugs, and then introduce a non-linear similarity fusion method. Comparing baseline methods, our advantage lies in performing an effective pre-completion step on the initial association matrix from the drug-related and microbe-related information and does not rely on the known drug-microbe associations, which can accelerate the design and discovery of the new drugs. The computational experiment results demonstrate that our proposed approach PLPMDA achieves significantly higher performance than the comparative methods in de novo and cross-validation experiments.
通过基于预完成的标签传播算法预测微生物与药物的关联
确定微生物与药物的关联对于系统地了解药物在治疗应用中的作用机制非常重要。由于通过生物学实验鉴定微生物-药物关联是昂贵且耗时的,在本研究中,我们提出了一种基于预完成的标签传播(PLP)方法(称为PLPMDA)来预测基于多类型相似性的微生物-药物关联。为了获得更丰富的药物与微生物信息,我们计算了药物化学结构相似度、药物解剖治疗化学(ATC)代码相似度、微生物功能相似度、微生物序列相似度和微生物与药物高斯相互作用谱(GIP)核相似度,并引入非线性相似度融合方法。与基线方法相比,我们的优势在于对药物相关和微生物相关信息的初始关联矩阵进行有效的预完成步骤,而不依赖于已知的药物-微生物关联,这可以加速新药的设计和发现。计算实验结果表明,我们提出的PLPMDA方法在从头验证和交叉验证实验中取得了显著高于比较方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信