Sentiment Analysis of Product Reviews in Russian using Convolutional Neural Networks

Sergey Smetanin, Mikhail M. Komarov
{"title":"Sentiment Analysis of Product Reviews in Russian using Convolutional Neural Networks","authors":"Sergey Smetanin, Mikhail M. Komarov","doi":"10.1109/CBI.2019.00062","DOIUrl":null,"url":null,"abstract":"Nowadays, product reviews on e-commerce sites tend to be a valuable resource in terms of evaluation of customers' behavior, their preferences, and needs. This paper provides an approach for sentiment analysis of product reviews in Russian using convolutional neural networks. We use Word2Vec pre-trained vectors as inputs for neural networks. This approach utilizes no hand-crafted features or sentiment lexicons. The training dataset was collected from reviews on top-ranked goods from the major e-commerce site in Russia, where the user-ranked scores were used as class labels. The system demonstrated the F-measure score up to 75.45% in a three-class classification. The collected training dataset and word embeddings are available to the research community.","PeriodicalId":193238,"journal":{"name":"2019 IEEE 21st Conference on Business Informatics (CBI)","volume":"20 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 21st Conference on Business Informatics (CBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBI.2019.00062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

Nowadays, product reviews on e-commerce sites tend to be a valuable resource in terms of evaluation of customers' behavior, their preferences, and needs. This paper provides an approach for sentiment analysis of product reviews in Russian using convolutional neural networks. We use Word2Vec pre-trained vectors as inputs for neural networks. This approach utilizes no hand-crafted features or sentiment lexicons. The training dataset was collected from reviews on top-ranked goods from the major e-commerce site in Russia, where the user-ranked scores were used as class labels. The system demonstrated the F-measure score up to 75.45% in a three-class classification. The collected training dataset and word embeddings are available to the research community.
基于卷积神经网络的俄语产品评论情感分析
如今,电子商务网站上的产品评论往往是评估客户行为、偏好和需求的宝贵资源。本文提出了一种使用卷积神经网络对俄语产品评论进行情感分析的方法。我们使用Word2Vec预训练向量作为神经网络的输入。这种方法不使用手工制作的功能或情感词汇。训练数据集是从俄罗斯主要电子商务网站对排名靠前的商品的评论中收集的,其中用户排名的分数被用作类别标签。该系统在三级分类中F-measure得分高达75.45%。收集的训练数据集和词嵌入可用于研究界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信