Cross-Project Dynamic Defect Prediction Model for Crowdsourced test

Yi Yao, Yuchan Liu, Song Huang, Hao Chen, Jialuo Liu, Fan Yang
{"title":"Cross-Project Dynamic Defect Prediction Model for Crowdsourced test","authors":"Yi Yao, Yuchan Liu, Song Huang, Hao Chen, Jialuo Liu, Fan Yang","doi":"10.1109/QRS51102.2020.00040","DOIUrl":null,"url":null,"abstract":"By comparing the predicted number of defects with the number found in crowdsourced test in real time, people can dynamically assess the progress of crowdsourced test tasks. In this paper, we propose a cross-project dynamic defect prediction model (CPDDPM) for crowdsourced test to predict the number of defects in real time. In the construction of training dataset, we use density-based clustering method to select instances from the multiple source project datasets and build the initial training dataset. In the dynamic correction, CPDDPM iteratively corrects the prediction model using crowdsourced test reports and ability attributes of the crowdsourced testers until the predicted results converge. We collected project defect datasets on the crowdsourced test platform, and evaluated prediction accuracy of CPDDPM by using relative error and prediction at level l. The results show that CPDDPM can greatly improve the prediction performance of defect number.","PeriodicalId":301814,"journal":{"name":"2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS51102.2020.00040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

By comparing the predicted number of defects with the number found in crowdsourced test in real time, people can dynamically assess the progress of crowdsourced test tasks. In this paper, we propose a cross-project dynamic defect prediction model (CPDDPM) for crowdsourced test to predict the number of defects in real time. In the construction of training dataset, we use density-based clustering method to select instances from the multiple source project datasets and build the initial training dataset. In the dynamic correction, CPDDPM iteratively corrects the prediction model using crowdsourced test reports and ability attributes of the crowdsourced testers until the predicted results converge. We collected project defect datasets on the crowdsourced test platform, and evaluated prediction accuracy of CPDDPM by using relative error and prediction at level l. The results show that CPDDPM can greatly improve the prediction performance of defect number.
面向众包测试的跨项目动态缺陷预测模型
通过将预测的缺陷数量与众包测试中发现的缺陷数量进行实时比较,人们可以动态地评估众包测试任务的进度。本文提出了一种面向众包测试的跨项目动态缺陷预测模型(CPDDPM),用于实时预测缺陷数量。在训练数据集的构建中,我们使用基于密度的聚类方法从多源项目数据集中选择实例,构建初始训练数据集。在动态修正中,CPDDPM利用众包测试报告和众包测试人员的能力属性对预测模型进行迭代修正,直到预测结果收敛。我们在众包测试平台上收集项目缺陷数据集,通过相对误差和一级预测对CPDDPM的预测精度进行评价,结果表明CPDDPM可以大大提高缺陷数的预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信