Planar Simplification of Indoor Point-Cloud Environments

Stephan Feichter, H. Hlavacs
{"title":"Planar Simplification of Indoor Point-Cloud Environments","authors":"Stephan Feichter, H. Hlavacs","doi":"10.1109/AIVR.2018.00066","DOIUrl":null,"url":null,"abstract":"The reconstruction and visualization of threedimensional point-cloud models, obtained by terrestrial laser scanners, is interesting to many research areas. This paper presents an algorithm to decimate redundant information in realworld indoor point-cloud scenes. The key idea is to recognize planar segments from the point-cloud and to decimate their inlier points by the triangulation of the boundary, describing the shape. To achieve this RANSAC, normal vector filtering, statistical clustering, alpha shape boundary recognition and the constrained Delaunay triangulation are used. The algorithm is tested on various large dense point-clouds and is capable of reduction rates from approximately 75-95%.","PeriodicalId":371868,"journal":{"name":"2018 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIVR.2018.00066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The reconstruction and visualization of threedimensional point-cloud models, obtained by terrestrial laser scanners, is interesting to many research areas. This paper presents an algorithm to decimate redundant information in realworld indoor point-cloud scenes. The key idea is to recognize planar segments from the point-cloud and to decimate their inlier points by the triangulation of the boundary, describing the shape. To achieve this RANSAC, normal vector filtering, statistical clustering, alpha shape boundary recognition and the constrained Delaunay triangulation are used. The algorithm is tested on various large dense point-clouds and is capable of reduction rates from approximately 75-95%.
室内点云环境的平面简化
由地面激光扫描仪获得的三维点云模型的重建和可视化是许多研究领域感兴趣的问题。提出了一种去除室内点云场景中冗余信息的算法。关键思想是从点云中识别平面线段,并通过边界的三角剖分来抽取其内层点,描述其形状。为了实现这种RANSAC,使用了法向量滤波、统计聚类、alpha形状边界识别和约束Delaunay三角剖分。该算法在各种大型密集点云上进行了测试,并取得了约75-95%的降噪率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信