Buket Erşahin, Özlem Aktaş, Deniz Kılınç, Ceyhun Akyol
{"title":"Twitter fake account detection","authors":"Buket Erşahin, Özlem Aktaş, Deniz Kılınç, Ceyhun Akyol","doi":"10.1109/UBMK.2017.8093420","DOIUrl":null,"url":null,"abstract":"Social networking sites such as Twitter and Facebook attracts millions of users across the world and their interaction with social networking has affected their life. This popularity in social networking has led to different problems including the possibility of exposing incorrect information to their users through fake accounts which results to the spread of malicious content. This situation can result to a huge damage in the real world to the society. In our study, we present a classification method for detecting the fake accounts on Twitter. We have preprocessed our dataset using a supervised discretization technique named Entropy Minimization Discretization (EMD) on numerical features and analyzed the results of the Naïve Bayes algorithm.","PeriodicalId":201903,"journal":{"name":"2017 International Conference on Computer Science and Engineering (UBMK)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computer Science and Engineering (UBMK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UBMK.2017.8093420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 79
Abstract
Social networking sites such as Twitter and Facebook attracts millions of users across the world and their interaction with social networking has affected their life. This popularity in social networking has led to different problems including the possibility of exposing incorrect information to their users through fake accounts which results to the spread of malicious content. This situation can result to a huge damage in the real world to the society. In our study, we present a classification method for detecting the fake accounts on Twitter. We have preprocessed our dataset using a supervised discretization technique named Entropy Minimization Discretization (EMD) on numerical features and analyzed the results of the Naïve Bayes algorithm.