F. Riandari, Aisyah Alesha, Hengki Tamando Sihotang
{"title":"Quantum computing for production planning","authors":"F. Riandari, Aisyah Alesha, Hengki Tamando Sihotang","doi":"10.35335/emod.v15i3.50","DOIUrl":null,"url":null,"abstract":"This research investigates the potential of quantum computing in production planning and addresses the limitations of conventional computing approaches. Traditional methods have been partially effective, but they struggle to solve complex optimization problems, accurately predict demand, and manage supply chains efficiently. The unique computational capabilities of quantum computing offer promising solutions to surmount these obstacles and revolutionize production planning processes. This study seeks to bridge the gap between quantum computing and production planning by analyzing the benefits, limitations, and challenges of its applicability in this field. It proposes customized algorithms and methodologies for leveraging quantum computation to enhance production planning efficiency, cost reduction, and decision-making processes. The research demonstrates the potential of quantum algorithms to minimize total production costs while appeasing demand and resource constraints through a numerical example and mathematical formulation. The results emphasize the advantages of quantum computing in terms of cost reduction, enhanced efficiency, and scalability. Comparisons with conventional methods illuminate the benefits and drawbacks of quantum computing in production planning. This research contributes to the development of novel strategies to improve production planning efficiency, lower costs, and enhance decision-making processes, allowing organizations to leverage quantum computing for optimized production operations","PeriodicalId":262913,"journal":{"name":"International Journal of Enterprise Modelling","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Enterprise Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35335/emod.v15i3.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This research investigates the potential of quantum computing in production planning and addresses the limitations of conventional computing approaches. Traditional methods have been partially effective, but they struggle to solve complex optimization problems, accurately predict demand, and manage supply chains efficiently. The unique computational capabilities of quantum computing offer promising solutions to surmount these obstacles and revolutionize production planning processes. This study seeks to bridge the gap between quantum computing and production planning by analyzing the benefits, limitations, and challenges of its applicability in this field. It proposes customized algorithms and methodologies for leveraging quantum computation to enhance production planning efficiency, cost reduction, and decision-making processes. The research demonstrates the potential of quantum algorithms to minimize total production costs while appeasing demand and resource constraints through a numerical example and mathematical formulation. The results emphasize the advantages of quantum computing in terms of cost reduction, enhanced efficiency, and scalability. Comparisons with conventional methods illuminate the benefits and drawbacks of quantum computing in production planning. This research contributes to the development of novel strategies to improve production planning efficiency, lower costs, and enhance decision-making processes, allowing organizations to leverage quantum computing for optimized production operations