Autonomic management of future wireless networks

M. A. Khan, H. Tembine
{"title":"Autonomic management of future wireless networks","authors":"M. A. Khan, H. Tembine","doi":"10.1109/ATNAC.2016.7878799","DOIUrl":null,"url":null,"abstract":"The traditional human controlled network management approaches may not cope with the envisioned virtualized and more dynamic mobile communication paradigm. We propose an autonomic network management and policy execution framework that re-factors the network functionalities by decomposing the network architecture into hierarchical layers. We propose an hybrid self-learning scheme and present an aggregate approach to efficient learning without reconstructing from scratch for each layer, cluster, and player, for a variety of learning algorithms widely used in practical network management. To evaluate performance of proposed framework, we develop a full-scale demonstrator. Results confirm that system learns autonomously.","PeriodicalId":317649,"journal":{"name":"2016 26th International Telecommunication Networks and Applications Conference (ITNAC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 26th International Telecommunication Networks and Applications Conference (ITNAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATNAC.2016.7878799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The traditional human controlled network management approaches may not cope with the envisioned virtualized and more dynamic mobile communication paradigm. We propose an autonomic network management and policy execution framework that re-factors the network functionalities by decomposing the network architecture into hierarchical layers. We propose an hybrid self-learning scheme and present an aggregate approach to efficient learning without reconstructing from scratch for each layer, cluster, and player, for a variety of learning algorithms widely used in practical network management. To evaluate performance of proposed framework, we develop a full-scale demonstrator. Results confirm that system learns autonomously.
未来无线网络的自主管理
传统的人为控制的网络管理方法可能无法应对预期的虚拟化和更动态的移动通信范式。我们提出了一个自主的网络管理和策略执行框架,该框架通过将网络架构分解为分层层来重新考虑网络功能。针对实际网络管理中广泛使用的各种学习算法,我们提出了一种混合自学习方案,并提出了一种聚合方法来实现高效学习,而无需对每一层、集群和参与者从头开始重建。为了评估所提出的框架的性能,我们开发了一个全尺寸的演示器。实验结果证实了系统的自主学习能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信