Research on denoising of skinned point cloud based on multi-feature point parameter weight optimization

Binpeng Li, Jian Mao, Jie Yang, Hang Cai
{"title":"Research on denoising of skinned point cloud based on multi-feature point parameter weight optimization","authors":"Binpeng Li, Jian Mao, Jie Yang, Hang Cai","doi":"10.1117/12.2674547","DOIUrl":null,"url":null,"abstract":"The effect of point cloud denoising is very important for the subsequent surface fitting and modeling design of the 3D scanning process. How to extract feature points quickly and accurately has become a research hotspot. However, the key to point cloud denoising lies in singular values and outliers. Therefore, this paper proposes a denoising model coupled with multi-feature parameters, discusses the influence degree of each feature point parameter separately, and uses the swarm intelligence algorithm to solve a set of optimal parameter weights to determine the point cloud denoising model, and to achieve the optimal denoising effect of 3D scattered point cloud. The simulation results show that the swarm intelligence algorithm used is faster and less time-consuming than the existing differential evolution algorithm. At the same time, the point cloud denoising model proposed in this paper has better performance than radius filtering and statistical filtering. denoising effect.","PeriodicalId":286364,"journal":{"name":"Conference on Computer Graphics, Artificial Intelligence, and Data Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Computer Graphics, Artificial Intelligence, and Data Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2674547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The effect of point cloud denoising is very important for the subsequent surface fitting and modeling design of the 3D scanning process. How to extract feature points quickly and accurately has become a research hotspot. However, the key to point cloud denoising lies in singular values and outliers. Therefore, this paper proposes a denoising model coupled with multi-feature parameters, discusses the influence degree of each feature point parameter separately, and uses the swarm intelligence algorithm to solve a set of optimal parameter weights to determine the point cloud denoising model, and to achieve the optimal denoising effect of 3D scattered point cloud. The simulation results show that the swarm intelligence algorithm used is faster and less time-consuming than the existing differential evolution algorithm. At the same time, the point cloud denoising model proposed in this paper has better performance than radius filtering and statistical filtering. denoising effect.
基于多特征点参数权重优化的蒙皮点云去噪研究
点云去噪的效果对后续的曲面拟合和三维扫描过程的建模设计非常重要。如何快速准确地提取特征点已成为研究热点。然而,点云去噪的关键在于奇异值和离群值。为此,本文提出了一种多特征参数耦合的去噪模型,分别讨论各特征点参数的影响程度,并利用群智能算法求解一组最优参数权值来确定点云去噪模型,从而实现三维散点云的最优去噪效果。仿真结果表明,所采用的群体智能算法比现有的差分进化算法速度更快,耗时更短。同时,本文提出的点云去噪模型比半径滤波和统计滤波具有更好的性能。去噪效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信