Enhanced target recognition using optimum polarimetric SAR signatures

F. Sadjadi
{"title":"Enhanced target recognition using optimum polarimetric SAR signatures","authors":"F. Sadjadi","doi":"10.1109/NRC.1998.678017","DOIUrl":null,"url":null,"abstract":"We present a new method for automatic target/object classification by using the optimum polarimetric radar signatures of the targets/objects of interest. The use of optimum polarimetric signatures for enhancing target recognition using synthetic aperture radar is explored. The polarization scattering matrix is used for the derivation of target signatures at arbitrary transmit and receive polarizations (arbitrary polarization inclination angles and ellipticity angles). Then an optimization criterion that minimizes the within class distance and maximizes the between class metrics is used for the derivation of optimum sets of polarimetric signatures. Then from sets of real fully polarimetric SAR imagery arbitrary polarization attributes are extracted. The performance of the automatic target detection and recognition algorithms using optimum sets of polarimetric signatures are derived and compared with those associated with the non-optimum signatures. The results show that noticeable improvements can be achieved by using the SAR signatures obtained via optimum transmits and receives over non-optimum signatures. This work indicates that by optimally adjusting the radar polarization-by using polarization filters-the target classification performance can be improved and targets that may not be easily separable can be separated.","PeriodicalId":432418,"journal":{"name":"Proceedings of the 1998 IEEE Radar Conference, RADARCON'98. Challenges in Radar Systems and Solutions (Cat. No.98CH36197)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1998 IEEE Radar Conference, RADARCON'98. Challenges in Radar Systems and Solutions (Cat. No.98CH36197)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRC.1998.678017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We present a new method for automatic target/object classification by using the optimum polarimetric radar signatures of the targets/objects of interest. The use of optimum polarimetric signatures for enhancing target recognition using synthetic aperture radar is explored. The polarization scattering matrix is used for the derivation of target signatures at arbitrary transmit and receive polarizations (arbitrary polarization inclination angles and ellipticity angles). Then an optimization criterion that minimizes the within class distance and maximizes the between class metrics is used for the derivation of optimum sets of polarimetric signatures. Then from sets of real fully polarimetric SAR imagery arbitrary polarization attributes are extracted. The performance of the automatic target detection and recognition algorithms using optimum sets of polarimetric signatures are derived and compared with those associated with the non-optimum signatures. The results show that noticeable improvements can be achieved by using the SAR signatures obtained via optimum transmits and receives over non-optimum signatures. This work indicates that by optimally adjusting the radar polarization-by using polarization filters-the target classification performance can be improved and targets that may not be easily separable can be separated.
增强目标识别使用最佳极化SAR签名
提出了一种利用感兴趣目标/物体的最优极化雷达特征进行目标/物体自动分类的新方法。探讨了利用最佳极化特征增强合成孔径雷达的目标识别能力。偏振散射矩阵用于推导任意发射和接收极化(任意极化倾角和椭圆度角)下的目标信号。然后利用类内距离最小和类间度量最大的优化准则,推导出最优的极化特征集。然后从一组真实的全极化SAR图像中提取任意极化属性。推导了使用最优极化特征集的自动目标检测和识别算法的性能,并与使用非最优极化特征集的算法进行了比较。结果表明,与非最优信号相比,使用通过最优发送和接收获得的SAR信号可以取得明显的改进。这项工作表明,通过优化调整雷达偏振,利用偏振滤波器,可以提高目标分类性能,并且可以分离不容易分离的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信