{"title":"b-bit minwise hashing in practice","authors":"Ping Li, Anshumali Shrivastava, A. König","doi":"10.1145/2532443.2532446","DOIUrl":null,"url":null,"abstract":"Minwise hashing is a standard technique in the context of search for approximating set similarities. The recent work [26, 32] demonstrated a potential use of b-bit minwise hashing [23, 24] for efficient search and learning on massive, high-dimensional, binary data (which are typical for many applications in Web search and text mining). In this paper, we focus on a number of critical issues which must be addressed before one can apply b-bit minwise hashing to the volumes of data often used industrial applications. Minwise hashing requires an expensive preprocessing step that computes k (e.g., 500) minimal values after applying the corresponding permutations for each data vector. We developed a parallelization scheme using GPUs and observed that the preprocessing time can be reduced by a factor of 20 ~ 80 and becomes substantially smaller than the data loading time. Reducing the preprocessing time is highly beneficial in practice, e.g., for duplicate Web page detection (where minwise hashing is a major step in the crawling pipeline) or for increasing the testing speed of online classifiers. Another critical issue is that for very large data sets it becomes im- possible to store a (fully) random permutation matrix, due to its space requirements. Our paper is the first study to demonstrate that b-bit minwise hashing implemented using simple hash functions, e.g., the 2-universal (2U) and 4-universal (4U) hash families, can produce very similar learning results as using fully random permutations. Experiments on datasets of up to 200GB are presented.","PeriodicalId":362187,"journal":{"name":"Proceedings of the 5th Asia-Pacific Symposium on Internetware","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th Asia-Pacific Symposium on Internetware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2532443.2532446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Minwise hashing is a standard technique in the context of search for approximating set similarities. The recent work [26, 32] demonstrated a potential use of b-bit minwise hashing [23, 24] for efficient search and learning on massive, high-dimensional, binary data (which are typical for many applications in Web search and text mining). In this paper, we focus on a number of critical issues which must be addressed before one can apply b-bit minwise hashing to the volumes of data often used industrial applications. Minwise hashing requires an expensive preprocessing step that computes k (e.g., 500) minimal values after applying the corresponding permutations for each data vector. We developed a parallelization scheme using GPUs and observed that the preprocessing time can be reduced by a factor of 20 ~ 80 and becomes substantially smaller than the data loading time. Reducing the preprocessing time is highly beneficial in practice, e.g., for duplicate Web page detection (where minwise hashing is a major step in the crawling pipeline) or for increasing the testing speed of online classifiers. Another critical issue is that for very large data sets it becomes im- possible to store a (fully) random permutation matrix, due to its space requirements. Our paper is the first study to demonstrate that b-bit minwise hashing implemented using simple hash functions, e.g., the 2-universal (2U) and 4-universal (4U) hash families, can produce very similar learning results as using fully random permutations. Experiments on datasets of up to 200GB are presented.