Successive Convexification for Optimal Control with Signal Temporal Logic Specifications

Y. Mao, Behçet Açikmese, P. Garoche, Alexandre Chapoutot
{"title":"Successive Convexification for Optimal Control with Signal Temporal Logic Specifications","authors":"Y. Mao, Behçet Açikmese, P. Garoche, Alexandre Chapoutot","doi":"10.1145/3501710.3519518","DOIUrl":null,"url":null,"abstract":"As the scope and complexity of modern cyber-physical systems increase, newer and more challenging mission requirements will be imposed on the optimal control of the underlying unmanned systems. This paper proposes a solution to handle complex temporal requirements formalized in Signal Temporal Logic (STL) specifications within the Successive Convexification (SCvx) algorithmic framework. This SCvx-STL solution method consists of four steps: 1) Express the STL specifications using their robust semantics as state constraints. 2) Introduce new auxiliary state variables to transform these state constraints as system dynamics, by exploiting the recursively defined structure of robust STL semantics. 3) Smooth the resulting system dynamics with polynomial smooth min- and max- functions. 4) Convexify and solve the resulting optimal control problem with the SCvx algorithm, which enjoys guaranteed convergence and polynomial time subproblem solving capability. Our approach retains the expressiveness of encoding mission requirements with STL semantics, while avoiding the usage of combinatorial optimization techniques such as Mixed-integer programming. Numerical results are shown to demonstrate its effectiveness.","PeriodicalId":194680,"journal":{"name":"Proceedings of the 25th ACM International Conference on Hybrid Systems: Computation and Control","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM International Conference on Hybrid Systems: Computation and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3501710.3519518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

As the scope and complexity of modern cyber-physical systems increase, newer and more challenging mission requirements will be imposed on the optimal control of the underlying unmanned systems. This paper proposes a solution to handle complex temporal requirements formalized in Signal Temporal Logic (STL) specifications within the Successive Convexification (SCvx) algorithmic framework. This SCvx-STL solution method consists of four steps: 1) Express the STL specifications using their robust semantics as state constraints. 2) Introduce new auxiliary state variables to transform these state constraints as system dynamics, by exploiting the recursively defined structure of robust STL semantics. 3) Smooth the resulting system dynamics with polynomial smooth min- and max- functions. 4) Convexify and solve the resulting optimal control problem with the SCvx algorithm, which enjoys guaranteed convergence and polynomial time subproblem solving capability. Our approach retains the expressiveness of encoding mission requirements with STL semantics, while avoiding the usage of combinatorial optimization techniques such as Mixed-integer programming. Numerical results are shown to demonstrate its effectiveness.
具有信号时序逻辑规范的最优控制的逐次凸化
随着现代信息物理系统的范围和复杂性的增加,对底层无人系统的最优控制提出了更新和更具挑战性的任务要求。本文提出了一种在连续凸化(SCvx)算法框架内处理信号时序逻辑(STL)规范中形成的复杂时序需求的解决方案。这种SCvx-STL解决方法包括四个步骤:1)使用STL规范的鲁棒语义作为状态约束来表达STL规范。2)通过利用鲁棒STL语义的递归定义结构,引入新的辅助状态变量,将这些状态约束转换为系统动力学。3)用多项式光滑最小和最大函数平滑得到的系统动力学。4)利用SCvx算法对得到的最优控制问题进行凸化求解,该算法具有保证收敛性和多项式时间子问题求解能力。我们的方法保留了用STL语义编码任务需求的表达性,同时避免了混合整数规划等组合优化技术的使用。数值结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信