Accurate Tracking of Monotonically Advancing Fronts

M. Hassouna, A. Farag
{"title":"Accurate Tracking of Monotonically Advancing Fronts","authors":"M. Hassouna, A. Farag","doi":"10.1109/CVPR.2006.46","DOIUrl":null,"url":null,"abstract":"A wide range of computer vision applications such as distance field computation, shape from shading, and shape representation require an accurate solution of a particular Hamilton-Jacobi (HJ) equation, known as the Eikonal equation. Although the fast marching method (FMM) is the most stable and consistent method among existing techniques for solving such equation, it suffers from large numerical error along diagonal directions as well as its computational complexity is not optimal. In this paper, we propose an improved version of the FMMthat is both highly accurate and computationally efficient for Cartesian domains. The new method is called the multi-stencils fast marching (MSFM), which computes the solution at each grid point by solving the Eikonal equation along several stencils and then picks the solution that satisfies the fast marching causality relationship. The stencils are centered at each grid point x and cover its entire nearest neighbors. In 2D space, 2 stencils cover the 8-neighbors of x, while in 3D space, 6 stencils cover its 26-neighbors. For those stencils that are not aligned with the natural coordinate system, the Eikonal equation is derived using directional derivatives and then solved using a higher order finite difference scheme.","PeriodicalId":421737,"journal":{"name":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2006.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

A wide range of computer vision applications such as distance field computation, shape from shading, and shape representation require an accurate solution of a particular Hamilton-Jacobi (HJ) equation, known as the Eikonal equation. Although the fast marching method (FMM) is the most stable and consistent method among existing techniques for solving such equation, it suffers from large numerical error along diagonal directions as well as its computational complexity is not optimal. In this paper, we propose an improved version of the FMMthat is both highly accurate and computationally efficient for Cartesian domains. The new method is called the multi-stencils fast marching (MSFM), which computes the solution at each grid point by solving the Eikonal equation along several stencils and then picks the solution that satisfies the fast marching causality relationship. The stencils are centered at each grid point x and cover its entire nearest neighbors. In 2D space, 2 stencils cover the 8-neighbors of x, while in 3D space, 6 stencils cover its 26-neighbors. For those stencils that are not aligned with the natural coordinate system, the Eikonal equation is derived using directional derivatives and then solved using a higher order finite difference scheme.
单调推进锋面的精确跟踪
广泛的计算机视觉应用,如距离场计算,阴影形状和形状表示,需要一个特定的Hamilton-Jacobi (HJ)方程的精确解,称为Eikonal方程。快速推进法(FMM)是目前求解该类方程的最稳定、最一致的方法,但其在对角线方向上存在较大的数值误差,且计算复杂度不是最优的。在本文中,我们提出了一个改进的fmm版本,它在笛卡尔域上具有很高的精度和计算效率。这种新方法被称为多模板快速推进(MSFM),它通过沿多个模板求解Eikonal方程来计算每个网格点的解,然后选择满足快速推进因果关系的解。模板以每个网格点x为中心,并覆盖其整个最近的邻居。在二维空间中,2个模板覆盖x的8个邻居,而在三维空间中,6个模板覆盖x的26个邻居。对于不与自然坐标系对齐的模板,先用方向导数推导出Eikonal方程,然后用高阶有限差分格式求解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信