A Web Service QoS Forecasting Approach Based on Multivariate Time Series

Pengcheng Zhang, Liyan Wang, Wenrui Li, H. Leung, Wei Song
{"title":"A Web Service QoS Forecasting Approach Based on Multivariate Time Series","authors":"Pengcheng Zhang, Liyan Wang, Wenrui Li, H. Leung, Wei Song","doi":"10.1109/ICWS.2017.27","DOIUrl":null,"url":null,"abstract":"In order to accurately forecast Quality of Service (QoS) of different Web Services, this paper proposes a novel QoS forecasting approach called MulA-LMRBF (Multi-step fore-casting with Advertisement and Levenberg-Marquardt improved Radial Basis Function) based on multivariate time series. Considering the correlation among different QoS attributes, we use phase-space reconstruction to map historical multivariate QoS data into a dynamic system, use Average Dimension (AD) to estimate the embedding dimension and delay time of reconstructed phase space. We also add the short-term QoS advertisement data of service provider to form a more comprehensive data set. Then, RBF (Radial Basis Function) neural network improved by the Levenberg-Marquardt (LM) algorithm is used to update the weight of the neural network dynamically, which improves the forecasting accuracy and realizes the dynamic multiple-step forecasting. The experimental results demonstrate that MulA-LMRBF is better than previous approaches in term of precision and is more suitable for multi-step forecasting.","PeriodicalId":235426,"journal":{"name":"2017 IEEE International Conference on Web Services (ICWS)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Web Services (ICWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWS.2017.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In order to accurately forecast Quality of Service (QoS) of different Web Services, this paper proposes a novel QoS forecasting approach called MulA-LMRBF (Multi-step fore-casting with Advertisement and Levenberg-Marquardt improved Radial Basis Function) based on multivariate time series. Considering the correlation among different QoS attributes, we use phase-space reconstruction to map historical multivariate QoS data into a dynamic system, use Average Dimension (AD) to estimate the embedding dimension and delay time of reconstructed phase space. We also add the short-term QoS advertisement data of service provider to form a more comprehensive data set. Then, RBF (Radial Basis Function) neural network improved by the Levenberg-Marquardt (LM) algorithm is used to update the weight of the neural network dynamically, which improves the forecasting accuracy and realizes the dynamic multiple-step forecasting. The experimental results demonstrate that MulA-LMRBF is better than previous approaches in term of precision and is more suitable for multi-step forecasting.
基于多元时间序列的Web服务QoS预测方法
为了准确预测不同Web服务的服务质量(QoS),本文提出了一种基于多变量时间序列的多步预测方法MulA-LMRBF (Multi-step forecasting with advertising and Levenberg-Marquardt improved Radial Basis Function)。考虑到不同QoS属性之间的相关性,采用相空间重构方法将历史多变量QoS数据映射到动态系统中,利用平均维数(AD)估计重构相空间的嵌入维数和延迟时间。我们还加入了服务提供商的短期QoS广告数据,形成了一个更全面的数据集。然后,利用Levenberg-Marquardt (LM)算法改进的RBF (Radial Basis Function)神经网络对神经网络权值进行动态更新,提高了预测精度,实现了动态多步预测。实验结果表明,MulA-LMRBF在精度上优于以往的方法,更适合于多步预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信