Pengcheng Zhang, Liyan Wang, Wenrui Li, H. Leung, Wei Song
{"title":"A Web Service QoS Forecasting Approach Based on Multivariate Time Series","authors":"Pengcheng Zhang, Liyan Wang, Wenrui Li, H. Leung, Wei Song","doi":"10.1109/ICWS.2017.27","DOIUrl":null,"url":null,"abstract":"In order to accurately forecast Quality of Service (QoS) of different Web Services, this paper proposes a novel QoS forecasting approach called MulA-LMRBF (Multi-step fore-casting with Advertisement and Levenberg-Marquardt improved Radial Basis Function) based on multivariate time series. Considering the correlation among different QoS attributes, we use phase-space reconstruction to map historical multivariate QoS data into a dynamic system, use Average Dimension (AD) to estimate the embedding dimension and delay time of reconstructed phase space. We also add the short-term QoS advertisement data of service provider to form a more comprehensive data set. Then, RBF (Radial Basis Function) neural network improved by the Levenberg-Marquardt (LM) algorithm is used to update the weight of the neural network dynamically, which improves the forecasting accuracy and realizes the dynamic multiple-step forecasting. The experimental results demonstrate that MulA-LMRBF is better than previous approaches in term of precision and is more suitable for multi-step forecasting.","PeriodicalId":235426,"journal":{"name":"2017 IEEE International Conference on Web Services (ICWS)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Web Services (ICWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWS.2017.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
In order to accurately forecast Quality of Service (QoS) of different Web Services, this paper proposes a novel QoS forecasting approach called MulA-LMRBF (Multi-step fore-casting with Advertisement and Levenberg-Marquardt improved Radial Basis Function) based on multivariate time series. Considering the correlation among different QoS attributes, we use phase-space reconstruction to map historical multivariate QoS data into a dynamic system, use Average Dimension (AD) to estimate the embedding dimension and delay time of reconstructed phase space. We also add the short-term QoS advertisement data of service provider to form a more comprehensive data set. Then, RBF (Radial Basis Function) neural network improved by the Levenberg-Marquardt (LM) algorithm is used to update the weight of the neural network dynamically, which improves the forecasting accuracy and realizes the dynamic multiple-step forecasting. The experimental results demonstrate that MulA-LMRBF is better than previous approaches in term of precision and is more suitable for multi-step forecasting.