Débora B. Pina, L. Neves, Daniel de Oliveira, M. Mattoso
{"title":"Captura Automática de Dados de Proveniência de Experimentos de Aprendizado de Máquina com Keras-Prov","authors":"Débora B. Pina, L. Neves, Daniel de Oliveira, M. Mattoso","doi":"10.5753/sbbd_estendido.2021.18165","DOIUrl":null,"url":null,"abstract":"Neste artigo apresentamos a Keras-Prov, uma extensão à biblioteca de aprendizado profundo Keras para prover dados de proveniência. A Keras-Prov captura, armazena e gerencia metadados e dados de proveniência de experimentos de aprendizado de máquina (ML), em especial de aprendizado profundo. A Keras-Prov identifica automaticamente as transformações de dados mais comuns, como, treinamento, teste, e adaptação, para capturar os dados de proveniência. A Keras-Prov flexibiliza a captura automática, permitindo que novos dados de proveniência sejam definidos, como valores adicionais de hiperparâmetros. À gerência de proveniência por meio do SGBD colunar MonetDB, Keras-Prov adiciona uma interface de monitoramento visual e um gerador de SQL para consultas analíticas aos dados durante a evolução do treinamento e a escolha de modelos. A análise de dados da Keras-Prov, durante o treinamento, subsidia decisões de sintonia fina de hiperparâmetros. A base de dados segue a recomendação W3C PROV, favorecendo a comparação, explicação e reprodução de tais experimentos de ML. A Keras-Prov é uma solução de código aberto e pode ser obtida em https://github.com/dbpina/keras-prov.","PeriodicalId":232860,"journal":{"name":"Anais Estendidos do XXXVI Simpósio Brasileiro de Banco de Dados (SBBD Estendido 2021)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais Estendidos do XXXVI Simpósio Brasileiro de Banco de Dados (SBBD Estendido 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbbd_estendido.2021.18165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Neste artigo apresentamos a Keras-Prov, uma extensão à biblioteca de aprendizado profundo Keras para prover dados de proveniência. A Keras-Prov captura, armazena e gerencia metadados e dados de proveniência de experimentos de aprendizado de máquina (ML), em especial de aprendizado profundo. A Keras-Prov identifica automaticamente as transformações de dados mais comuns, como, treinamento, teste, e adaptação, para capturar os dados de proveniência. A Keras-Prov flexibiliza a captura automática, permitindo que novos dados de proveniência sejam definidos, como valores adicionais de hiperparâmetros. À gerência de proveniência por meio do SGBD colunar MonetDB, Keras-Prov adiciona uma interface de monitoramento visual e um gerador de SQL para consultas analíticas aos dados durante a evolução do treinamento e a escolha de modelos. A análise de dados da Keras-Prov, durante o treinamento, subsidia decisões de sintonia fina de hiperparâmetros. A base de dados segue a recomendação W3C PROV, favorecendo a comparação, explicação e reprodução de tais experimentos de ML. A Keras-Prov é uma solução de código aberto e pode ser obtida em https://github.com/dbpina/keras-prov.