{"title":"Periodic knowledge discovery through parallel paradigm","authors":"K. Rani, V. K. Prasad, C. R. Rao","doi":"10.1109/PDGC.2012.6449932","DOIUrl":null,"url":null,"abstract":"Temporal association rules are largely different from traditional association rules by the fact that temporal association rules attempt to model temporal relationships in the data. Effective gain in any business is possible to achieve due to the adaptive knowledge which demands customized rules for specific conditions. Several parallel algorithms are useful to extract frequent patterns from large databases. This paper proposes a novel methodology for extracting calendric association rules and hence the general rules for a timestamp transactional database through modified Parallel Compact Pattern Tree construction strategy. The same has been demonstrated through mushroom dataset and synthetic temporal transactions.","PeriodicalId":166718,"journal":{"name":"2012 2nd IEEE International Conference on Parallel, Distributed and Grid Computing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 2nd IEEE International Conference on Parallel, Distributed and Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDGC.2012.6449932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Temporal association rules are largely different from traditional association rules by the fact that temporal association rules attempt to model temporal relationships in the data. Effective gain in any business is possible to achieve due to the adaptive knowledge which demands customized rules for specific conditions. Several parallel algorithms are useful to extract frequent patterns from large databases. This paper proposes a novel methodology for extracting calendric association rules and hence the general rules for a timestamp transactional database through modified Parallel Compact Pattern Tree construction strategy. The same has been demonstrated through mushroom dataset and synthetic temporal transactions.