Set Theory

Jon Pierre Fortney
{"title":"Set Theory","authors":"Jon Pierre Fortney","doi":"10.1090/text/056/02","DOIUrl":null,"url":null,"abstract":"12. An ordinal written as ωαn1 + . . . + ω αnk, where α1 > . . . > αk are ordinals (and k and n1, . . . , nk are non-zero natural numbers), is said to be in Cantor Normal Form. Show that every non-zero ordinal has a unique Cantor Normal Form. What is the Cantor Normal Form for the ordinal ǫ0? 13. What is the smallest fixed point of α 7→ ω? The next smallest? And the next smallest? Show that the fixed points are unbounded, and explain why this means that we may index the fixed points by the ordinals. Is there a countable ordinal α such that α is the α-th fixed point?","PeriodicalId":395767,"journal":{"name":"Discrete Mathematics for Computer Science","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics for Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/text/056/02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

12. An ordinal written as ωαn1 + . . . + ω αnk, where α1 > . . . > αk are ordinals (and k and n1, . . . , nk are non-zero natural numbers), is said to be in Cantor Normal Form. Show that every non-zero ordinal has a unique Cantor Normal Form. What is the Cantor Normal Form for the ordinal ǫ0? 13. What is the smallest fixed point of α 7→ ω? The next smallest? And the next smallest? Show that the fixed points are unbounded, and explain why this means that we may index the fixed points by the ordinals. Is there a countable ordinal α such that α is the α-th fixed point?
集理论
12. 序数ωαn1 +…+ ω αnk,其中α1 >。> αk为序数(k和n1,…(k为非零自然数),称为康托范式。证明了每一个非零序数都有一个唯一的康托范式。序数ǫ0的康托范式是什么?13. α 7→ω的最小不动点是什么?第二个最小的?那第二个最小的呢?证明不动点是无界的,并解释为什么这意味着我们可以用序数来索引不动点。是否存在一个可数序数使得α是α-不动点?
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信