Design and realization of personalized service in electronic commerce

Liu Xiao-liang
{"title":"Design and realization of personalized service in electronic commerce","authors":"Liu Xiao-liang","doi":"10.1109/ICCSIT.2009.5234605","DOIUrl":null,"url":null,"abstract":"Classical collaborative filtering recommendation is the most successful recommendation algorithm in electronic commerce system application. However, along with the continuous increase of site structure, content complexity and user number, data is extremely sparse and the real-time property and recommendation accuracy of algorithm decrease significantly, even no any commodity can be recommended. This paper classifies the users in electronic commerce by collaborative clustering and carries out different page recommendations for different types of users to realize the personalized service in electronic commerce.","PeriodicalId":342396,"journal":{"name":"2009 2nd IEEE International Conference on Computer Science and Information Technology","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 2nd IEEE International Conference on Computer Science and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSIT.2009.5234605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Classical collaborative filtering recommendation is the most successful recommendation algorithm in electronic commerce system application. However, along with the continuous increase of site structure, content complexity and user number, data is extremely sparse and the real-time property and recommendation accuracy of algorithm decrease significantly, even no any commodity can be recommended. This paper classifies the users in electronic commerce by collaborative clustering and carries out different page recommendations for different types of users to realize the personalized service in electronic commerce.
电子商务中个性化服务的设计与实现
经典的协同过滤推荐算法是电子商务系统中应用最为成功的推荐算法。然而,随着网站结构、内容复杂性和用户数量的不断增加,数据极其稀疏,算法的实时性和推荐精度显著下降,甚至没有任何商品可以被推荐。本文通过协同聚类对电子商务中的用户进行分类,并针对不同类型的用户进行不同的页面推荐,实现电子商务中的个性化服务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信