Second-Order Learning and Inference using Incomplete Data for Uncertain Bayesian Networks: A Two Node Example

Lance M. Kaplan, Federico Cerutti, Murat Sensoy, K. Mishra
{"title":"Second-Order Learning and Inference using Incomplete Data for Uncertain Bayesian Networks: A Two Node Example","authors":"Lance M. Kaplan, Federico Cerutti, Murat Sensoy, K. Mishra","doi":"10.23919/FUSION45008.2020.9190472","DOIUrl":null,"url":null,"abstract":"Efficient second-order probabilistic inference in uncertain Bayesian networks was recently introduced. However, such second -order inference methods presume training over complete training data. While the expectation-maximization framework is well-established for learning Bayesian network parameters for incomplete training data, the framework does not determine the covariance of the parameters. This paper introduces two methods to compute the covariances for the parameters of Bayesian networks or Markov random fields due to incomplete data for two-node networks. The first method computes the covariances directly from the posterior distribution of parameters, and the second method more efficiently estimates the covariances from the Fisher information matrix. Finally, the implications and effectiveness of these covariances is theoretically and empirically evaluated.","PeriodicalId":419881,"journal":{"name":"2020 IEEE 23rd International Conference on Information Fusion (FUSION)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 23rd International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/FUSION45008.2020.9190472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Efficient second-order probabilistic inference in uncertain Bayesian networks was recently introduced. However, such second -order inference methods presume training over complete training data. While the expectation-maximization framework is well-established for learning Bayesian network parameters for incomplete training data, the framework does not determine the covariance of the parameters. This paper introduces two methods to compute the covariances for the parameters of Bayesian networks or Markov random fields due to incomplete data for two-node networks. The first method computes the covariances directly from the posterior distribution of parameters, and the second method more efficiently estimates the covariances from the Fisher information matrix. Finally, the implications and effectiveness of these covariances is theoretically and empirically evaluated.
不确定贝叶斯网络中使用不完全数据的二阶学习与推理:一个双节点示例
介绍了不确定贝叶斯网络中有效的二阶概率推理。然而,这种二阶推理方法假定在完整的训练数据上进行训练。虽然期望最大化框架已经建立,用于学习不完整训练数据的贝叶斯网络参数,但该框架并不能确定参数的协方差。本文介绍了两节点网络贝叶斯网络或马尔可夫随机场参数在数据不完全情况下的协方差计算方法。第一种方法直接从参数的后验分布中计算协方差,第二种方法更有效地从Fisher信息矩阵中估计协方差。最后,对这些协方差的影响和有效性进行了理论和实证评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信