{"title":"Multi-objective optimization for number of joints and lengths of multi-jointed robot arm","authors":"Hyeongjun Kim, H. Yamakawa","doi":"10.1109/ICIES.2012.6530869","DOIUrl":null,"url":null,"abstract":"In this paper, we deal with optimization problems of the number of joints and lengths of multi-jointed rigid arms. We assume target points to yield a path by Spline function and formulate optimization problems with multiple loops to find optimum number of joints and lengths. The objective of the optimum problem can be taken among various functions. The optimal problem is formulated here by multi-objective functions minimizing driving energy and maximizing manipulability measure. It is a difficult problem to find the optimum number of joints and lengths of a multi-jointed rigid robot arm directly by mathematical programing. Then, we utilize an algorithm based on Genetic Algorithm (GA) in order to solve inverse dynamic problems and optimization problems. The obtained results are examined from many points of view.","PeriodicalId":410182,"journal":{"name":"2012 First International Conference on Innovative Engineering Systems","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 First International Conference on Innovative Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIES.2012.6530869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, we deal with optimization problems of the number of joints and lengths of multi-jointed rigid arms. We assume target points to yield a path by Spline function and formulate optimization problems with multiple loops to find optimum number of joints and lengths. The objective of the optimum problem can be taken among various functions. The optimal problem is formulated here by multi-objective functions minimizing driving energy and maximizing manipulability measure. It is a difficult problem to find the optimum number of joints and lengths of a multi-jointed rigid robot arm directly by mathematical programing. Then, we utilize an algorithm based on Genetic Algorithm (GA) in order to solve inverse dynamic problems and optimization problems. The obtained results are examined from many points of view.