VMD based adaptive multiscale fuzzy entropy and its application to rolling bearing fault diagnosis

Zheng Jinde, Jiang Zhanwei, P. Ziwei, Zhang Kang
{"title":"VMD based adaptive multiscale fuzzy entropy and its application to rolling bearing fault diagnosis","authors":"Zheng Jinde, Jiang Zhanwei, P. Ziwei, Zhang Kang","doi":"10.1109/ICSENST.2016.7796267","DOIUrl":null,"url":null,"abstract":"Based on the recently proposed method for nonlinear and non-stationary vibration signal, variational mode decomposition (VMD), an adaptive multiscale fuzzy entropy (AMFE) method is introduced in this paper. Firstly, the VMD method is used to decompose the vibration signals of rolling bearing into a number of intrinsic mode functions (IMFs). Then the fuzzy entropy of each IMF is computed. Meanwhile, combining with support vector machine (SVM), a new rolling bearing fault diagnosis approach is put forward. The proposed method is applied to the experimental data of rolling bearing and the analysis results show the effectiveness of the proposed method.","PeriodicalId":297617,"journal":{"name":"2016 10th International Conference on Sensing Technology (ICST)","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 10th International Conference on Sensing Technology (ICST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENST.2016.7796267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Based on the recently proposed method for nonlinear and non-stationary vibration signal, variational mode decomposition (VMD), an adaptive multiscale fuzzy entropy (AMFE) method is introduced in this paper. Firstly, the VMD method is used to decompose the vibration signals of rolling bearing into a number of intrinsic mode functions (IMFs). Then the fuzzy entropy of each IMF is computed. Meanwhile, combining with support vector machine (SVM), a new rolling bearing fault diagnosis approach is put forward. The proposed method is applied to the experimental data of rolling bearing and the analysis results show the effectiveness of the proposed method.
基于VMD的自适应多尺度模糊熵及其在滚动轴承故障诊断中的应用
基于最近提出的非线性非平稳振动信号的变分模态分解(VMD)方法,提出了一种自适应多尺度模糊熵(AMFE)方法。首先,采用VMD方法将滚动轴承振动信号分解为若干内禀模态函数(IMFs);然后计算各IMF的模糊熵。同时,结合支持向量机(SVM),提出了一种新的滚动轴承故障诊断方法。将该方法应用于滚动轴承的实验数据,分析结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信