P. Schmidt, R. Dürichen, Attila Reiss, Kristof Van Laerhoven, T. Plötz
{"title":"Multi-target affect detection in the wild: an exploratory study","authors":"P. Schmidt, R. Dürichen, Attila Reiss, Kristof Van Laerhoven, T. Plötz","doi":"10.1145/3341163.3347741","DOIUrl":null,"url":null,"abstract":"Affective computing aims to detect a person's affective state (e.g. emotion) based on observables. The link between affective states and biophysical data, collected in lab settings, has been established successfully. However, the number of realistic studies targeting affect detection in the wild is still limited. In this paper we present an exploratory field study, using physiological data of 11 healthy subjects. We aim to classify arousal, State-Trait Anxiety Inventory (STAI), stress, and valence self-reports, utilizing feature-based and convolutional neural network (CNN) methods. In addition, we extend the CNNs to multi-task CNNs, classifying all labels of interest simultaneously. Comparing the F1 score averaged over the different tasks and classifiers the CNNs reach an 1.8% higher score than the classical methods. However, the F1 scores barely exceed 45%. In the light of these results, we discuss pitfalls and challenges for physiology-based affective computing in the wild.","PeriodicalId":112916,"journal":{"name":"Proceedings of the 2019 ACM International Symposium on Wearable Computers","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 ACM International Symposium on Wearable Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3341163.3347741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36
Abstract
Affective computing aims to detect a person's affective state (e.g. emotion) based on observables. The link between affective states and biophysical data, collected in lab settings, has been established successfully. However, the number of realistic studies targeting affect detection in the wild is still limited. In this paper we present an exploratory field study, using physiological data of 11 healthy subjects. We aim to classify arousal, State-Trait Anxiety Inventory (STAI), stress, and valence self-reports, utilizing feature-based and convolutional neural network (CNN) methods. In addition, we extend the CNNs to multi-task CNNs, classifying all labels of interest simultaneously. Comparing the F1 score averaged over the different tasks and classifiers the CNNs reach an 1.8% higher score than the classical methods. However, the F1 scores barely exceed 45%. In the light of these results, we discuss pitfalls and challenges for physiology-based affective computing in the wild.