Extreme multi-stability in hyperjerk memristive system with hidden attractors and its adaptive synchronisation scheme

D. Prousalis, C. Volos, I. Stouboulos, I. Kyprianidis
{"title":"Extreme multi-stability in hyperjerk memristive system with hidden attractors and its adaptive synchronisation scheme","authors":"D. Prousalis, C. Volos, I. Stouboulos, I. Kyprianidis","doi":"10.1504/IJSPM.2018.094737","DOIUrl":null,"url":null,"abstract":"This paper presents a study of the phenomenon of extreme multi-stability in a novel 4D hyperjerk memristive system. The proposed system appertains to the category of dynamical systems with hidden attractors due to infinite equilibrium points. The behaviour of the system is investigated through numerical simulations, by using well-known tools of nonlinear theory, such as phase portrait, bifurcation diagram and Lyapunov exponents. Also, this work showed that the extreme multi-stability phenomenon of the behaviour of infinitely many coexisting attractors depends on the initial conditions of the variables of the system. Moreover, the case of chaos synchronisation of the system with unknown parameters, using adaptive synchronisation method, is investigated.","PeriodicalId":266151,"journal":{"name":"Int. J. Simul. Process. Model.","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Simul. Process. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJSPM.2018.094737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents a study of the phenomenon of extreme multi-stability in a novel 4D hyperjerk memristive system. The proposed system appertains to the category of dynamical systems with hidden attractors due to infinite equilibrium points. The behaviour of the system is investigated through numerical simulations, by using well-known tools of nonlinear theory, such as phase portrait, bifurcation diagram and Lyapunov exponents. Also, this work showed that the extreme multi-stability phenomenon of the behaviour of infinitely many coexisting attractors depends on the initial conditions of the variables of the system. Moreover, the case of chaos synchronisation of the system with unknown parameters, using adaptive synchronisation method, is investigated.
具有隐藏吸引子的超跳记忆系统的极端多稳定性及其自适应同步方案
本文研究了一类新型四维超跳记忆系统的极端多稳定性现象。该系统属于由于平衡点无穷多而具有隐吸引子的动力系统。利用相画像、分岔图和李亚普诺夫指数等著名的非线性理论工具,对系统的行为进行了数值模拟研究。同时,本文还证明了无穷多个共存吸引子行为的极端多稳定性现象取决于系统变量的初始条件。在此基础上,利用自适应同步方法研究了系统参数未知时的混沌同步问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信