Effects of Social Approval Votes on Search Performance

G. Kazai, Natasa Milic-Frayling
{"title":"Effects of Social Approval Votes on Search Performance","authors":"G. Kazai, Natasa Milic-Frayling","doi":"10.1109/ITNG.2009.281","DOIUrl":null,"url":null,"abstract":"In this paper we develop a Social Information Retrieval model that incorporates different types of social approval votes for documents in a collection. The approvals reflect a level of endorsement by the community related to the collection and can be interpreted as trust, relevance, recommendation, and similar. They can come from perceived authorities, such as recognized experts and professional associations, or from aggregated opinions of a wider community, representing popular approval. We conducted preliminary experiments to incorporate social approval votes into search over 42,000 books by training neural networks. Using a set of 250 search topics with partial relevance judgments from non-expert users, we observe that the votes reflecting a broad appeal are most effective. We hypothesize that such sources of approval are more compatible with the general nature of the relevance judgments used in the experiments.","PeriodicalId":347761,"journal":{"name":"2009 Sixth International Conference on Information Technology: New Generations","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Sixth International Conference on Information Technology: New Generations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITNG.2009.281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

In this paper we develop a Social Information Retrieval model that incorporates different types of social approval votes for documents in a collection. The approvals reflect a level of endorsement by the community related to the collection and can be interpreted as trust, relevance, recommendation, and similar. They can come from perceived authorities, such as recognized experts and professional associations, or from aggregated opinions of a wider community, representing popular approval. We conducted preliminary experiments to incorporate social approval votes into search over 42,000 books by training neural networks. Using a set of 250 search topics with partial relevance judgments from non-expert users, we observe that the votes reflecting a broad appeal are most effective. We hypothesize that such sources of approval are more compatible with the general nature of the relevance judgments used in the experiments.
社会认同投票对搜索绩效的影响
在本文中,我们开发了一个社会信息检索模型,该模型结合了集合中文档的不同类型的社会批准投票。批准反映了与收藏相关的社区的一定程度的认可,可以解释为信任、相关性、推荐等。它们可以来自公认的权威,如公认的专家和专业协会,也可以来自更广泛的社区的综合意见,代表大众的认可。我们进行了初步实验,通过训练神经网络,将社会认可投票纳入超过42000本书的搜索中。使用一组包含250个搜索主题的非专家用户的部分相关性判断,我们观察到反映广泛吸引力的投票是最有效的。我们假设这种认可的来源与实验中使用的相关性判断的一般性质更相容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信