Partitioning of ontologies driven by a structure-based approach

F. Amato, Aniello De Santo, V. Moscato, Fabio Persia, A. Picariello, S. Poccia
{"title":"Partitioning of ontologies driven by a structure-based approach","authors":"F. Amato, Aniello De Santo, V. Moscato, Fabio Persia, A. Picariello, S. Poccia","doi":"10.1109/icosc.2015.7050827","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel structure-based partitioning algorithm able to break a large ontology into different modules related to specific topics for the domain of interest. In particular, we leverage the topological properties of the ontology graph and exploit several techniques derived from Network Analysis to produce an effective partitioning without considering any information about semantics of ontology relationships. An automated partitioning tool has been developed and several preliminary experiments have been conducted to validate the effectiveness of our approach with respect to other techniques.","PeriodicalId":126701,"journal":{"name":"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icosc.2015.7050827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

In this paper, we propose a novel structure-based partitioning algorithm able to break a large ontology into different modules related to specific topics for the domain of interest. In particular, we leverage the topological properties of the ontology graph and exploit several techniques derived from Network Analysis to produce an effective partitioning without considering any information about semantics of ontology relationships. An automated partitioning tool has been developed and several preliminary experiments have been conducted to validate the effectiveness of our approach with respect to other techniques.
由基于结构的方法驱动的本体划分
在本文中,我们提出了一种新的基于结构的划分算法,该算法能够将大型本体分解为与感兴趣领域的特定主题相关的不同模块。特别是,我们利用本体图的拓扑属性,并利用来自网络分析的几种技术来产生有效的划分,而不考虑任何关于本体关系语义的信息。已经开发了一个自动分区工具,并进行了几个初步实验,以验证我们的方法相对于其他技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信