Positive solutions for semipositone singular α-order (2< α <3) fractional BVPs on the half-line with D^β-derivative dependence

Abdelhamid Benmezaï
{"title":"Positive solutions for semipositone singular α-order (2< α <3) fractional BVPs on the half-line with D^β-derivative dependence","authors":"Abdelhamid Benmezaï","doi":"10.7153/fdc-2020-10-15","DOIUrl":null,"url":null,"abstract":". This article deals with existence of positive solutions to the fractional boundary value where α ∈ ( 2 , 3 ) , β ∈ ( 0 , α − 2 ] , D α is the standard Riemann-Liouville fractional derivative and the function f : ( 0 , + ∞ ) 3 → R is continuous semipositone and may exhibit singular at u = 0 and at D β u = 0 The main existence result is obtained by means of Guo-Krasnoselskii’s version of expansion and compression of a cone principal in a Banach space.","PeriodicalId":135809,"journal":{"name":"Fractional Differential Calculus","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Differential Calculus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/fdc-2020-10-15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. This article deals with existence of positive solutions to the fractional boundary value where α ∈ ( 2 , 3 ) , β ∈ ( 0 , α − 2 ] , D α is the standard Riemann-Liouville fractional derivative and the function f : ( 0 , + ∞ ) 3 → R is continuous semipositone and may exhibit singular at u = 0 and at D β u = 0 The main existence result is obtained by means of Guo-Krasnoselskii’s version of expansion and compression of a cone principal in a Banach space.
半正体奇异α-阶(2< α <3)分数BVPs在半线上的正解与D^β-导数相关
. 本文处理正解的存在性的部分边界值α∈(2、3),β∈(0,α−2],Dα是标准Riemann-Liouville分数导数和函数f:(0, +∞)3→R是连续半正定和可能出现奇异u = 0和Dβu = 0的主要存在方法获得的结果是Guo-Krasnoselskii版的扩张和锥主要在巴拿赫空间的压缩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信