Applying Neural Networks to English-Chinese Named Entity Transliteration

NEWS@ACM Pub Date : 2016-08-01 DOI:10.18653/v1/W16-2710
Yan Shao, Joakim Nivre
{"title":"Applying Neural Networks to English-Chinese Named Entity Transliteration","authors":"Yan Shao, Joakim Nivre","doi":"10.18653/v1/W16-2710","DOIUrl":null,"url":null,"abstract":"This paper presents the machine transliteration systems that we employ for our participation in the NEWS 2016 machine transliteration shared task. Based on the prevalent deep learning models developed for general sequence processing tasks, we use convolutional neural networks to extract character level information from the transliteration units and stack a simple recurrent neural network on top for sequence processing. The systems are applied to the standard runs for both English to Chinese and Chinese to English transliteration tasks. Our systems achieve competitive results according to the official evaluation.","PeriodicalId":254249,"journal":{"name":"NEWS@ACM","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NEWS@ACM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W16-2710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

This paper presents the machine transliteration systems that we employ for our participation in the NEWS 2016 machine transliteration shared task. Based on the prevalent deep learning models developed for general sequence processing tasks, we use convolutional neural networks to extract character level information from the transliteration units and stack a simple recurrent neural network on top for sequence processing. The systems are applied to the standard runs for both English to Chinese and Chinese to English transliteration tasks. Our systems achieve competitive results according to the official evaluation.
神经网络在英汉命名实体音译中的应用
本文介绍了我们用于参与NEWS 2016机器音译共享任务的机器音译系统。基于为一般序列处理任务开发的流行深度学习模型,我们使用卷积神经网络从音译单元提取字符级信息,并在其上堆叠一个简单的递归神经网络进行序列处理。这套系统适用于中英文转写及中英文转写的标准程序。根据官方评估,我们的系统取得了有竞争力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信