Online Anomaly Symptom Detection and Process's Resource Usage Control

Midori Sugaya, Kimio Kuramitsu
{"title":"Online Anomaly Symptom Detection and Process's Resource Usage Control","authors":"Midori Sugaya, Kimio Kuramitsu","doi":"10.1109/ISADS.2011.106","DOIUrl":null,"url":null,"abstract":"In this paper we propose an online lightweight anomaly symptom detection and process’s resource usage control mechanism. Our system collects fine-grain resource information that can reflect the subtle changes of the application’sbehavior. Then it creates models with a learning-based algorithm without manual configurations. If an anomaly symptom is detected, the automatic procedure will start. The system will control the suspected application’s resource use by limiting the upper bound resource of the process. The method will make the application yield its CPU to the administrative inspection. In this paper, we described whole architecture of the system and evaluate it with the non deterministic and deterministic failure. Our experimental results indicate that our prototype system is able to detect non deterministic failure with high precision in anomaly training and control it’s resource use with an overhead of about 1%.","PeriodicalId":221833,"journal":{"name":"2011 Tenth International Symposium on Autonomous Decentralized Systems","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Tenth International Symposium on Autonomous Decentralized Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISADS.2011.106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we propose an online lightweight anomaly symptom detection and process’s resource usage control mechanism. Our system collects fine-grain resource information that can reflect the subtle changes of the application’sbehavior. Then it creates models with a learning-based algorithm without manual configurations. If an anomaly symptom is detected, the automatic procedure will start. The system will control the suspected application’s resource use by limiting the upper bound resource of the process. The method will make the application yield its CPU to the administrative inspection. In this paper, we described whole architecture of the system and evaluate it with the non deterministic and deterministic failure. Our experimental results indicate that our prototype system is able to detect non deterministic failure with high precision in anomaly training and control it’s resource use with an overhead of about 1%.
在线异常现象检测及进程资源使用控制
本文提出了一种在线轻量级异常症状检测和进程资源使用控制机制。我们的系统收集细粒度的资源信息,这些信息可以反映应用程序行为的细微变化。然后,它使用基于学习的算法创建模型,而无需手动配置。如果检测到异常现象,将启动自动过程。系统将通过限制进程的资源上限来控制可疑应用程序的资源使用。该方法将使应用程序将其CPU交给行政检查。在本文中,我们描述了系统的整体架构,并对其进行了不确定性和确定性故障的评估。我们的实验结果表明,我们的原型系统能够在异常训练中高精度地检测不确定性故障,并以约1%的开销控制其资源使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信