A visual and interactive tool for optimizing lexical postcorrection of OCR results

Christian M. Strohmaier, Christoph Ringlstetter, K. Schulz, S. Mihov
{"title":"A visual and interactive tool for optimizing lexical postcorrection of OCR results","authors":"Christian M. Strohmaier, Christoph Ringlstetter, K. Schulz, S. Mihov","doi":"10.1109/CVPRW.2003.10031","DOIUrl":null,"url":null,"abstract":"Systems for postcorrection of OCR-results can be fine tuned and adapted to new recognition tasks in many respects. One issue is the selection and adaption of a suitable background dictionary. Another issue is the choice of a correction model, which includes, among other decisions, the selection of an appropriate distance measure for strings and the choice of a scoring function for ranking distinct correction alternatives. When combining the results obtained from distinct OCR engines, further parameters have to be fixed. Due to all these degrees of freedom, adaption and fine tuning of systems for lexical postcorrection is a difficult process. Here we describe a visual and interactive tool that semi-automates the generation of ground truth data, partially automates adjustment of parameters, yields active support for error analysis and thus helps to find correction strategies that lead to high accuracy with realistic effort.","PeriodicalId":121249,"journal":{"name":"2003 Conference on Computer Vision and Pattern Recognition Workshop","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 Conference on Computer Vision and Pattern Recognition Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2003.10031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Systems for postcorrection of OCR-results can be fine tuned and adapted to new recognition tasks in many respects. One issue is the selection and adaption of a suitable background dictionary. Another issue is the choice of a correction model, which includes, among other decisions, the selection of an appropriate distance measure for strings and the choice of a scoring function for ranking distinct correction alternatives. When combining the results obtained from distinct OCR engines, further parameters have to be fixed. Due to all these degrees of freedom, adaption and fine tuning of systems for lexical postcorrection is a difficult process. Here we describe a visual and interactive tool that semi-automates the generation of ground truth data, partially automates adjustment of parameters, yields active support for error analysis and thus helps to find correction strategies that lead to high accuracy with realistic effort.
一个可视化的交互式工具,用于优化OCR结果的词法后校正
ocr结果后校正系统可以在许多方面进行微调并适应新的识别任务。其中一个问题是选择和改编合适的背景词典。另一个问题是校正模型的选择,其中包括为字符串选择适当的距离度量,以及为不同的校正选择排序的评分函数的选择。当结合从不同OCR引擎获得的结果时,必须确定进一步的参数。由于所有这些自由度,词汇后校正系统的适应和微调是一个困难的过程。在这里,我们描述了一个可视化和交互式工具,它可以半自动化地生成真实数据,部分自动化地调整参数,为误差分析提供主动支持,从而有助于找到校正策略,从而通过实际的努力获得高精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信