Journal entry anomaly detection model

Q1 Economics, Econometrics and Finance
Mario Zupan, Verica Budimir, Svjetlana Letinic
{"title":"Journal entry anomaly detection model","authors":"Mario Zupan,&nbsp;Verica Budimir,&nbsp;Svjetlana Letinic","doi":"10.1002/isaf.1485","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Although numerous scientific papers have been written on deep learning, very few have been written on the exploitation of such technology in the field of accounting or bookkeeping. Our scientific study is oriented exactly toward this specific field. As accountants, we know the problems faced in modern accounting. Although accountants may have a plethora of information regarding technology support, looking for errors or fraud is a demanding and time-consuming task that depends on manual skills and professional knowledge. Our efforts are oriented toward resolving the problem of error-detection automation that is currently possible through new technologies, and we are trying to develop a web application that will alleviate the problems of journal entry anomaly detection. Our developed application accepts data from one specific enterprise resource planning system while also representing a general software framework for other enterprise resource planning developers. Our web application is a prototype that uses two of the most popular deep-learning architectures; namely, a variational autoencoder and long short-term memory. The application was tested on two different journals: data set D, learned on accounting journals from 2007 to 2018 and then tested during the year 2019, and data set H, learned on journals from 2014 to 2016 and then tested during the year 2017. Both accounting journals were generated by micro entrepreneurs.</p>\n </div>","PeriodicalId":53473,"journal":{"name":"Intelligent Systems in Accounting, Finance and Management","volume":"27 4","pages":"197-209"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/isaf.1485","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems in Accounting, Finance and Management","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/isaf.1485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 5

Abstract

Although numerous scientific papers have been written on deep learning, very few have been written on the exploitation of such technology in the field of accounting or bookkeeping. Our scientific study is oriented exactly toward this specific field. As accountants, we know the problems faced in modern accounting. Although accountants may have a plethora of information regarding technology support, looking for errors or fraud is a demanding and time-consuming task that depends on manual skills and professional knowledge. Our efforts are oriented toward resolving the problem of error-detection automation that is currently possible through new technologies, and we are trying to develop a web application that will alleviate the problems of journal entry anomaly detection. Our developed application accepts data from one specific enterprise resource planning system while also representing a general software framework for other enterprise resource planning developers. Our web application is a prototype that uses two of the most popular deep-learning architectures; namely, a variational autoencoder and long short-term memory. The application was tested on two different journals: data set D, learned on accounting journals from 2007 to 2018 and then tested during the year 2019, and data set H, learned on journals from 2014 to 2016 and then tested during the year 2017. Both accounting journals were generated by micro entrepreneurs.

日记账异常检测模型
尽管有许多关于深度学习的科学论文,但很少有关于在会计或簿记领域利用这种技术的论文。我们的科学研究正是针对这一特定领域。作为会计,我们知道现代会计面临的问题。尽管会计师可能有大量关于技术支持的信息,但查找错误或欺诈是一项要求高且耗时的任务,这取决于手工技能和专业知识。我们的努力是为了解决错误检测自动化的问题,这是目前可能通过新技术实现的,我们正在尝试开发一个web应用程序,以减轻日志条目异常检测的问题。我们开发的应用程序接受来自特定企业资源规划系统的数据,同时也为其他企业资源规划开发人员提供了一个通用的软件框架。我们的web应用程序是一个原型,它使用了两种最流行的深度学习架构;即变分自编码器和长短期记忆。该应用程序在两个不同的期刊上进行了测试:数据集D是在2007年至2018年的会计期刊上学习的,然后在2019年进行了测试;数据集H是在2014年至2016年的期刊上学习的,然后在2017年进行了测试。这两份会计期刊都是由微型企业家创办的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Intelligent Systems in Accounting, Finance and Management
Intelligent Systems in Accounting, Finance and Management Economics, Econometrics and Finance-Finance
CiteScore
6.00
自引率
0.00%
发文量
0
期刊介绍: Intelligent Systems in Accounting, Finance and Management is a quarterly international journal which publishes original, high quality material dealing with all aspects of intelligent systems as they relate to the fields of accounting, economics, finance, marketing and management. In addition, the journal also is concerned with related emerging technologies, including big data, business intelligence, social media and other technologies. It encourages the development of novel technologies, and the embedding of new and existing technologies into applications of real, practical value. Therefore, implementation issues are of as much concern as development issues. The journal is designed to appeal to academics in the intelligent systems, emerging technologies and business fields, as well as to advanced practitioners who wish to improve the effectiveness, efficiency, or economy of their working practices. A special feature of the journal is the use of two groups of reviewers, those who specialize in intelligent systems work, and also those who specialize in applications areas. Reviewers are asked to address issues of originality and actual or potential impact on research, teaching, or practice in the accounting, finance, or management fields. Authors working on conceptual developments or on laboratory-based explorations of data sets therefore need to address the issue of potential impact at some level in submissions to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信